Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China.
Changping Laboratory, Beijing, People's Republic of China.
Nat Commun. 2024 Jul 30;15(1):6397. doi: 10.1038/s41467-024-50012-w.
DNA base editing technologies predominantly utilize engineered deaminases, limiting their ability to edit thymine and guanine directly. In this study, we successfully achieve base editing of both cytidine and thymine by leveraging the translesion DNA synthesis pathway through the engineering of uracil-DNA glycosylase (UNG). Employing structure-based rational design, exploration of homologous proteins, and mutation screening, we identify a Deinococcus radiodurans UNG mutant capable of effectively editing thymine. When fused with the nickase Cas9, the engineered DrUNG protein facilitates efficient thymine base editing at endogenous sites, achieving editing efficiencies up to 55% without enrichment and exhibiting minimal cellular toxicity. This thymine base editor (TBE) exhibits high editing specificity and significantly restores IDUA enzyme activity in cells derived from patients with Hurler syndrome. TBEs represent efficient, specific, and low-toxicity approaches to base editing with potential applications in treating relevant diseases.
DNA 碱基编辑技术主要利用工程化的脱氨酶,限制了其直接编辑胸腺嘧啶和鸟嘌呤的能力。在这项研究中,我们通过工程化尿嘧啶-DNA 糖基化酶(UNG)利用跨损伤 DNA 合成途径,成功实现了胞嘧啶和胸腺嘧啶的碱基编辑。我们采用基于结构的合理设计、同源蛋白的探索和突变筛选,鉴定出一种能够有效编辑胸腺嘧啶的耐辐射球菌 UNG 突变体。当与切口酶 Cas9 融合时,工程化的 DrUNG 蛋白可在内源位点高效进行胸腺嘧啶碱基编辑,无需富集即可达到高达 55%的编辑效率,且细胞毒性极小。这种胸腺嘧啶碱基编辑器(TBE)具有高编辑特异性,并能显著恢复亨廷顿病患者来源细胞中的 IDUA 酶活性。TBE 代表了高效、特异性和低毒性的碱基编辑方法,具有治疗相关疾病的应用潜力。