Rankhambe Devika, Sanjay Ainapure Bharati, Appasani Bhargav, Srinivasulu Avireni, Bizon Nicu
Department of Computer Engineering, Vishwakarma University, Pune 411046, India.
School of Electronics Engineering, KKalinga Institute of Industrial Technology, Bhubaneswar 751024, India.
Bioengineering (Basel). 2024 Dec 10;11(12):1251. doi: 10.3390/bioengineering11121251.
Anxiety is a widespread mental health issue, and binaural beats have been explored as a potential non-invasive treatment. EEG data reveal changes in neural oscillation and connectivity linked to anxiety reduction; however, harmonics introduced during signal acquisition and processing often distort these findings. Existing methods struggle to effectively reduce harmonics and capture the fine-grained temporal dynamics of EEG signals, leading to inaccurate feature extraction. Hence, a novel Denoised Harmonic Subtraction and Transient Temporal Feature Extraction is proposed to improve the analysis of the impact of binaural beats on anxiety levels. Initially, a novel Wiener Fused Convo Filter is introduced to capture spatial features and eliminate linear noise in EEG signals. Next, an Intrinsic Harmonic Subtraction Network is employed, utilizing the Attentive Weighted Least Mean Square (AW-LMS) algorithm to capture nonlinear summation and resonant coupling effects, effectively eliminating the misinterpretation of brain rhythms. To address the challenge of fine-grained temporal dynamics, an Embedded Transfo XL Recurrent Network is introduced to detect and extract relevant parameters associated with transient events in EEG data. Finally, EEG data undergo harmonic reduction and temporal feature extraction before classification with a cross-correlated Markov Deep Q-Network (DQN). This facilitates anxiety level classification into normal, mild, moderate, and severe categories. The model demonstrated a high accuracy of 95.6%, precision of 90%, sensitivity of 93.2%, and specificity of 96% in classifying anxiety levels, outperforming previous models. This integrated approach enhances EEG signal processing, enabling reliable anxiety classification and offering valuable insights for therapeutic interventions.
焦虑是一种普遍存在的心理健康问题,双耳节拍已被探索作为一种潜在的非侵入性治疗方法。脑电图(EEG)数据揭示了与焦虑减轻相关的神经振荡和连接性变化;然而,在信号采集和处理过程中引入的谐波常常会扭曲这些发现。现有方法难以有效减少谐波并捕捉EEG信号的细粒度时间动态,导致特征提取不准确。因此,提出了一种新颖的去噪谐波减法和瞬态时间特征提取方法,以改进对双耳节拍对焦虑水平影响的分析。首先,引入了一种新颖的维纳融合卷积滤波器来捕捉空间特征并消除EEG信号中的线性噪声。接下来,采用本征谐波减法网络,利用注意力加权最小均方(AW-LMS)算法捕捉非线性求和和谐振耦合效应,有效消除对脑节律的误判。为了解决细粒度时间动态的挑战,引入了一种嵌入式变换器XL循环网络来检测和提取与EEG数据中的瞬态事件相关的参数。最后,EEG数据在使用互相关马尔可夫深度Q网络(DQN)进行分类之前进行谐波减少和时间特征提取。这有助于将焦虑水平分类为正常、轻度、中度和重度类别。该模型在焦虑水平分类中表现出95.6%的高精度、90%的精确率、93.2%的灵敏度和96%的特异性,优于先前的模型。这种综合方法增强了EEG信号处理能力,实现了可靠的焦虑分类,并为治疗干预提供了有价值的见解。