Jacob Jisu Elsa, Chandrasekharan Sreejith, Iype Thomas, Cherian Ajith
Assistant Professor, Department of Electronics and Communication Engineering, Sree Chitra Thirunal College of Engineering Thiruvananthapuram, Kerala, India.
Independent Researcher Thiruvananthapuram Kerala India.
Neurosci Lett. 2025 Feb 16;849:138146. doi: 10.1016/j.neulet.2025.138146. Epub 2025 Jan 31.
EEG signals exhibit spatio-temporal characteristics due to the neural activity dispersion in space over the brain and the dynamic temporal patterns of electrical activity in neurons. This study tries to effectively utilize the spatio-temporal nature of EEG signals for diagnosing encephalopathy using a combination of novel locality preserving feature extraction using Local Binary Patterns (LBP) and a custom fine-tuned Long Short-Term Memory (LSTM) neural network. A carefully curated primary EEG dataset is used to assess the effectiveness of the technique for treatment of encephalopathies. EEG signals of all electrodes are mapped onto a spatial matrix from which the custom feature extraction method isolates spatial features of the signals. These spatial features are further given to the neural network, which learns to combine the spatial information with temporal dynamics summarizing pertinent details from the raw EEG data. Such a unified representation is key to perform reliable disease classification at the output layer of the neural network, leading to a robust classification system, potentially providing improved diagnosis and treatment. The proposed method shows promising potential for enhancing the automated diagnosis of encephalopathy, with a remarkable accuracy rate of 90.5%. To the best of our knowledge, this is the first attempt to compress and represent both spatial and temporal features into a single vector for encephalopathy detection, simplifying visual diagnosis and providing a robust feature for automated predictions. This advancement holds significant promise for ensuring early detection and intervention strategies in the clinical environment, which in turn enhances patient care.
由于大脑中神经活动在空间上的分散以及神经元电活动的动态时间模式,脑电图(EEG)信号呈现出时空特征。本研究试图通过结合使用局部二值模式(LBP)进行新颖的局部保持特征提取和定制的微调长短期记忆(LSTM)神经网络,有效地利用EEG信号的时空特性来诊断脑病。使用精心策划的原始EEG数据集来评估该技术治疗脑病的有效性。所有电极的EEG信号被映射到一个空间矩阵上,定制的特征提取方法从该矩阵中分离出信号的空间特征。这些空间特征进一步被输入到神经网络中,该网络学习将空间信息与时间动态相结合,从原始EEG数据中总结出相关细节。这种统一的表示对于在神经网络的输出层进行可靠的疾病分类至关重要,从而形成一个强大的分类系统,有可能提供改进的诊断和治疗。所提出的方法在增强脑病自动诊断方面显示出有希望的潜力,准确率高达90.5%。据我们所知,这是首次尝试将空间和时间特征压缩并表示为单个向量用于脑病检测,简化了视觉诊断并为自动预测提供了强大的特征。这一进展对于确保临床环境中的早期检测和干预策略具有重要意义,进而提高患者护理水平。