Suppr超能文献

基于SCAPS-1D的SbSe薄膜太阳能电池的数值研究与器件结构优化

Numerical Investigation and Device Architecture Optimization of SbSe Thin-Film Solar Cells Using SCAPS-1D.

作者信息

Lai Chung-Kuan, Lin Yi-Cheng

机构信息

Department of Mechatronics Engineering, National Changhua University of Education, Changhua 50007, Taiwan.

出版信息

Materials (Basel). 2024 Dec 19;17(24):6203. doi: 10.3390/ma17246203.

Abstract

Antimony selenide (SbSe) shows promise for photovoltaics due to its favorable properties and low toxicity. However, current SbSe solar cells exhibit efficiencies significantly below their theoretical limits, primarily due to interface recombination and non-optimal device architectures. This study presents a comprehensive numerical investigation of SbSe thin-film solar cells using SCAPS-1D simulation software, focusing on device architecture optimization and interface engineering. We systematically analyzed device configurations (substrate and superstrate), hole-transport layer (HTL) materials (including NiOx, CZTS, CuO, CuO, CuI, CuSCN, CZ-TA, and Spiro-OMeTAD), layer thicknesses, carrier densities, and resistance effects. The substrate configuration with molybdenum back contact demonstrated superior performance compared with the superstrate design, primarily due to favorable energy band alignment at the Mo/SbSe interface. Among the investigated HTL materials, CuO exhibited optimal performance with minimal valence-band offset, achieving maximum efficiency at 0.06 μm thickness. Device optimization revealed critical parameters: series resistance should be minimized to 0-5 Ω-cm while maintaining shunt resistance above 2000 Ω-cm. The optimized Mo/CuO(0.06 μm)/SbSe/CdS/i-ZnO/ITO/Al structure achieved a remarkable power conversion efficiency (PCE) of 21.68%, representing a significant improvement from 14.23% in conventional cells without HTL. This study provides crucial insights for the practical development of high-efficiency SbSe solar cells, demonstrating the significant impact of device architecture optimization and interface engineering on overall performance.

摘要

硒化锑(SbSe)因其良好的性能和低毒性在光伏领域展现出应用前景。然而,目前的SbSe太阳能电池效率显著低于其理论极限,主要原因是界面复合和非优化的器件结构。本研究使用SCAPS-1D模拟软件对SbSe薄膜太阳能电池进行了全面的数值研究,重点关注器件结构优化和界面工程。我们系统地分析了器件配置(衬底和覆层)、空穴传输层(HTL)材料(包括NiOx、CZTS、CuO、CuI、CuSCN、CZ-TA和Spiro-OMeTAD)、层厚度、载流子密度和电阻效应。与覆层设计相比,具有钼背接触的衬底配置表现出更优的性能,这主要归因于Mo/SbSe界面处有利的能带排列。在所研究的HTL材料中,CuO表现出最佳性能,价带偏移最小,在厚度为0.06μm时实现了最高效率。器件优化揭示了关键参数:串联电阻应最小化至0 - 5Ω·cm,同时保持并联电阻高于2000Ω·cm。优化后的Mo/CuO(0.06μm)/SbSe/CdS/i-ZnO/ITO/Al结构实现了21.68%的显著功率转换效率(PCE),相较于没有HTL的传统电池的14.23%有了显著提高。本研究为高效SbSe太阳能电池的实际开发提供了关键见解,证明了器件结构优化和界面工程对整体性能的重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/11676449/d73a0ec1e87c/materials-17-06203-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验