甲基辅酶M还原酶翻译后谷氨酰胺甲基化所需的一种自由基S-腺苷甲硫氨酸酶的遗传和生化特性
Genetic and biochemical characterization of a radical SAM enzyme required for post-translational glutamine methylation of methyl-coenzyme M reductase.
作者信息
Rodriguez Carrero Roy J, Lloyd Cody T, Borkar Janhavi, Nath Shounak, Mirica Liviu M, Nair Satish, Booker Squire J, Metcalf William
机构信息
Department of Microbiology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA.
Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA.
出版信息
mBio. 2025 Feb 5;16(2):e0354624. doi: 10.1128/mbio.03546-24. Epub 2025 Jan 8.
Methyl-coenzyme M reductase (MCR), the key catalyst in the anoxic production and consumption of methane, contains an unusual 2-methylglutamine residue within its active site. data show that a B12-dependent radical SAM (rSAM) enzyme, designated MgmA, is responsible for this post-translational modification (PTM). Here, we show that two different MgmA homologs are able to methylate MCR when expressed in , an organism that does not normally possess this PTM. strains expressing MgmA showed small, but significant, reductions in growth rates and yields on methylotrophic substrates. Structural characterization of the Ni(II) form of Gln-methylated MCR revealed no significant differences in the protein fold between the modified and unmodified enzyme; however, the purified enzyme contained the heterodisulfide reaction product, as opposed to the free cofactors found in eight prior MCR structures, suggesting that substrate/product binding is altered in the modified enzyme. Structural characterization of MgmA revealed a fold similar to other B12-dependent rSAMs, with a wide active site cleft capable of binding an McrA peptide in an extended, linear conformation.IMPORTANCEMethane plays a key role in the global carbon cycle and is an important driver of climate change. Because MCR is responsible for nearly all biological methane production and most anoxic methane consumption, it plays a major role in setting the atmospheric levels of this important greenhouse gas. Thus, a detailed understanding of this enzyme is critical for the development of methane mitigation strategies.
甲基辅酶M还原酶(MCR)是甲烷在缺氧条件下生成和消耗过程中的关键催化剂,其活性位点含有一个不寻常的2-甲基谷氨酰胺残基。数据表明,一种名为MgmA的依赖维生素B12的自由基S-腺苷甲硫氨酸(rSAM)酶负责这种翻译后修饰(PTM)。在此,我们表明,当在通常不具有这种PTM的生物体中表达时,两种不同的MgmA同源物能够使MCR甲基化。表达MgmA的菌株在甲基营养型底物上的生长速率和产量出现了微小但显著的下降。谷氨酰胺甲基化的MCR的镍(II)形式的结构表征显示,修饰后的酶与未修饰的酶在蛋白质折叠方面没有显著差异;然而,纯化后的酶含有异二硫键反应产物,这与之前八个MCR结构中发现的游离辅因子不同,表明修饰后的酶中底物/产物的结合发生了改变。MgmA的结构表征显示其折叠结构与其他依赖维生素B12的rSAM相似,具有一个宽阔的活性位点裂隙,能够以伸展的线性构象结合McrA肽。
重要性
甲烷在全球碳循环中起着关键作用,是气候变化的重要驱动因素。由于MCR几乎负责所有生物甲烷的生成以及大多数缺氧甲烷的消耗,它在设定这种重要温室气体的大气水平方面发挥着主要作用。因此,详细了解这种酶对于制定甲烷减排策略至关重要。
相似文献
Psychopharmacol Bull. 2024-7-8
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2022-9-26
Cochrane Database Syst Rev. 2017-12-22
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2005-7-20
Cochrane Database Syst Rev. 2020-10-19
本文引用的文献
Appl Environ Microbiol. 2024-7-24
Angew Chem Int Ed Engl. 2022-12-12
FEBS Lett. 2023-1
ACS Bio Med Chem Au. 2022-6-15
Angew Chem Int Ed Engl. 2022-8-8
ACS Bio Med Chem Au. 2022-2-16