Suppr超能文献

基于时间序列的中国新疆伊犁哈萨克自治州人间布鲁氏菌病病例预测分析

Prediction analysis of human brucellosis cases in Ili Kazakh Autonomous Prefecture Xinjiang China based on time series.

作者信息

Lu Lian, Yang Tongxia, Chen Zhisheng, Ge Qidi, Yang Jing, Sen Gan

机构信息

Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.

The Second People's Hospital of Yining, Yining, 835000, China.

出版信息

Sci Rep. 2025 Jan 7;15(1):1232. doi: 10.1038/s41598-024-80513-z.

Abstract

Human brucellosis remains a significant public health issue in the Ili Kazak Autonomous Prefecture, Xinjiang, China. To assist local Centers for Disease Control and Prevention (CDC) in promptly formulate effective prevention and control measures, this study leveraged time-series data on brucellosis cases from February 2010 to September 2023 in Ili Kazak Autonomous Prefecture. Three distinct predictive modeling techniques-Seasonal Autoregressive Integrated Moving Average (SARIMA), eXtreme Gradient Boosting (XGBoost), and Long Short-Term Memory (LSTM) networks-were employed for long-term forecasting. Further, the optimal model will be used to explore the impact of COVID-19 on the transmission of Human brucellosis in the region. We constructed a SARIMA(4,1,1)(3,1,2)12 model, an XGBoost model with a time lag of 22, and an LSTM model featuring 3 LSTM layers and 100 neurons in the fully connected layer to predict monthly reported cases from January 2021 to September 2023. The results indicated that the occurrence of brucellosis exhibits pronounced seasonal patterns, with higher incidence during summer and autumn, peaking in June annually. Performance evaluations revealed low Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Symmetric Mean Absolute Percentage Error (SMAPE) for all three models. Specifically, the coefficient of determination (R) was 0.6177 for the SARIMA model, 0.8033 for the XGBoost model, and 0.6523 for the LSTM model. The study found that the XGBoost model outperformed the other two in long-term forecasting of brucellosis, demonstrating higher predictive accuracy. This discovery can aid public health departments in advancing the deployment of prevention and control resources, particularly during peak seasons of brucellosis. It was also found that the impact of the COVID-19 pandemic on the transmission of human brucellosis in the region was minimal. This research not only provides a reliable predictive tool but also offers a scientific basis for formulating early prevention and control strategies, potentially reducing the spread of this disease.

摘要

人间布鲁氏菌病仍是中国新疆伊犁哈萨克自治州一个重大的公共卫生问题。为协助当地疾病预防控制中心(CDC)迅速制定有效的防控措施,本研究利用了2010年2月至2023年9月伊犁哈萨克自治州布鲁氏菌病病例的时间序列数据。采用了三种不同的预测建模技术——季节性自回归积分滑动平均(SARIMA)、极端梯度提升(XGBoost)和长短期记忆(LSTM)网络——进行长期预测。此外,将使用最优模型来探究新冠疫情对该地区人间布鲁氏菌病传播的影响。我们构建了一个SARIMA(4,1,1)(3,1,2)12模型、一个时间滞后为22的XGBoost模型以及一个在全连接层具有3个LSTM层和100个神经元的LSTM模型,以预测2021年1月至2023年9月的每月报告病例数。结果表明,布鲁氏菌病的发生呈现出明显的季节性模式,夏秋季节发病率较高,每年6月达到峰值。性能评估显示,所有三个模型的平均绝对误差(MAE)、均方根误差(RMSE)和对称平均绝对百分比误差(SMAPE)都较低。具体而言,SARIMA模型的决定系数(R)为0.6177,XGBoost模型为0.8033,LSTM模型为0.6523。研究发现,在布鲁氏菌病的长期预测中,XGBoost模型优于其他两个模型,具有更高的预测准确性。这一发现有助于公共卫生部门推进防控资源的调配,特别是在布鲁氏菌病的高发季节。研究还发现,新冠疫情对该地区人间布鲁氏菌病传播的影响微乎其微。本研究不仅提供了一个可靠的预测工具,还为制定早期防控策略提供了科学依据,有可能减少该疾病的传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8b/11706974/b8c63396f23e/41598_2024_80513_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验