Suppr超能文献

作为一种干预手段的人工智能:改善临床结果依赖于对人工智能开发和验证采用因果方法。

AI as an intervention: improving clinical outcomes relies on a causal approach to AI development and validation.

作者信息

Joshi Shalmali, Urteaga Iñigo, van Amsterdam Wouter A C, Hripcsak George, Elias Pierre, Recht Benjamin, Elhadad Noémie, Fackler James, Sendak Mark P, Wiens Jenna, Deshpande Kaivalya, Wald Yoav, Fiterau Madalina, Lipton Zachary, Malinsky Daniel, Nayan Madhur, Namkoong Hongseok, Park Soojin, Vogt Julia E, Ranganath Rajesh

机构信息

Department of Biomedical Informatics, Columbia University, New York, NY 10032, United States.

BCAM-Basque Center for Applied Mathematics, Bilbao 48009, Spain.

出版信息

J Am Med Inform Assoc. 2025 Mar 1;32(3):589-594. doi: 10.1093/jamia/ocae301.

Abstract

The primary practice of healthcare artificial intelligence (AI) starts with model development, often using state-of-the-art AI, retrospectively evaluated using metrics lifted from the AI literature like AUROC and DICE score. However, good performance on these metrics may not translate to improved clinical outcomes. Instead, we argue for a better development pipeline constructed by working backward from the end goal of positively impacting clinically relevant outcomes using AI, leading to considerations of causality in model development and validation, and subsequently a better development pipeline. Healthcare AI should be "actionable," and the change in actions induced by AI should improve outcomes. Quantifying the effect of changes in actions on outcomes is causal inference. The development, evaluation, and validation of healthcare AI should therefore account for the causal effect of intervening with the AI on clinically relevant outcomes. Using a causal lens, we make recommendations for key stakeholders at various stages of the healthcare AI pipeline. Our recommendations aim to increase the positive impact of AI on clinical outcomes.

摘要

医疗保健人工智能(AI)的主要实践始于模型开发,通常使用最先进的人工智能技术,并使用从人工智能文献中借鉴的指标(如AUROC和DICE分数)进行回顾性评估。然而,这些指标上的良好表现不一定能转化为改善临床结果。相反,我们主张通过从利用人工智能积极影响临床相关结果的最终目标反向推导来构建更好的开发流程,这导致在模型开发和验证中考虑因果关系,进而形成更好的开发流程。医疗保健人工智能应该是“可操作的”,由人工智能引发的行动变化应该改善结果。量化行动变化对结果的影响就是因果推断。因此,医疗保健人工智能的开发、评估和验证应该考虑干预人工智能对临床相关结果的因果效应。从因果关系的角度出发,我们为医疗保健人工智能流程各个阶段的关键利益相关者提出建议。我们的建议旨在增加人工智能对临床结果的积极影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af7/11833492/988a3a7d076d/ocae301f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验