Derbal Youcef
Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON, Canada.
Clin Med Insights Oncol. 2025 Jan 6;19:11795549241311408. doi: 10.1177/11795549241311408. eCollection 2025.
Despite the expanding therapeutic options available to cancer patients, therapeutic resistance, disease recurrence, and metastasis persist as hallmark challenges in the treatment of cancer. The rise to prominence of generative artificial intelligence (GenAI) in many realms of human activities is compelling the consideration of its capabilities as a potential lever to advance the development of effective cancer treatments. This article presents a hypothetical case study on the application of generative pre-trained transformers (GPTs) to the treatment of metastatic prostate cancer (mPC). The case explores the design of GPT-supported adaptive intermittent therapy for mPC. Testosterone and prostate-specific antigen (PSA) are assumed to be repeatedly monitored while treatment may involve a combination of androgen deprivation therapy (ADT), androgen receptor-signalling inhibitors (ARSI), chemotherapy, and radiotherapy. The analysis covers various questions relevant to the configuration, training, and inferencing of GPTs for the case of mPC treatment with a particular attention to risk mitigation regarding the hallucination problem and its implications to clinical integration of GenAI technologies. The case study provides elements of an actionable pathway to the realization of GenAI-assisted adaptive treatment of metastatic prostate cancer. As such, the study is expected to help facilitate the design of clinical trials of GenAI-supported cancer treatments.
尽管癌症患者可选择的治疗方法不断增加,但治疗耐药性、疾病复发和转移仍然是癌症治疗中的标志性挑战。生成式人工智能(GenAI)在人类活动的许多领域中日益突出,这促使人们考虑其作为推进有效癌症治疗发展的潜在手段的能力。本文介绍了一个关于生成式预训练变换器(GPT)应用于转移性前列腺癌(mPC)治疗的假设性案例研究。该案例探讨了用于mPC的GPT支持的适应性间歇治疗的设计。假设在治疗过程中会反复监测睾酮和前列腺特异性抗原(PSA),治疗可能包括雄激素剥夺疗法(ADT)、雄激素受体信号抑制剂(ARSI)、化疗和放疗的联合应用。分析涵盖了与用于mPC治疗的GPT的配置、训练和推理相关的各种问题,特别关注了关于幻觉问题的风险缓解及其对GenAI技术临床整合的影响。该案例研究为实现GenAI辅助的转移性前列腺癌适应性治疗提供了可操作途径的要素。因此,预计该研究将有助于推动GenAI支持的癌症治疗临床试验的设计。