Suppr超能文献

大语言模型与联邦学习的整合。

Integration of large language models and federated learning.

作者信息

Chen Chaochao, Feng Xiaohua, Li Yuyuan, Lyu Lingjuan, Zhou Jun, Zheng Xiaolin, Yin Jianwei

机构信息

Zhejiang University, Hangzhou, China.

Hangzhou Dianzi University, Hangzhou, China.

出版信息

Patterns (N Y). 2024 Dec 13;5(12):101098. doi: 10.1016/j.patter.2024.101098.

Abstract

As the parameter size of large language models (LLMs) continues to expand, there is an urgent need to address the scarcity of high-quality data. In response, existing research has attempted to make a breakthrough by incorporating federated learning (FL) into LLMs. Conversely, considering the outstanding performance of LLMs in task generalization, researchers have also tried applying LLMs within FL to tackle challenges in relevant domains. The complementarity between LLMs and FL has already ignited widespread research interest. In this review, we aim to deeply explore the integration of LLMs and FL. We propose a research framework dividing the fusion of LLMs and FL into three parts: the combination of LLM sub-technologies with FL, the integration of FL sub-technologies with LLMs, and the overall merger of LLMs and FL. We first provide a comprehensive review of the current state of research in the domain of LLMs combined with FL, including their typical applications, integration advantages, challenges faced, and future directions for resolution. Subsequently, we discuss the practical applications of the combination of LLMs and FL in critical scenarios such as healthcare, finance, and education and provide new perspectives and insights into future research directions for LLMs and FL.

摘要

随着大语言模型(LLMs)的参数规模不断扩大,迫切需要解决高质量数据稀缺的问题。对此,现有研究试图通过将联邦学习(FL)纳入大语言模型来取得突破。相反,考虑到大语言模型在任务泛化方面的出色表现,研究人员也尝试在联邦学习中应用大语言模型来应对相关领域的挑战。大语言模型与联邦学习之间的互补性已经引发了广泛的研究兴趣。在这篇综述中,我们旨在深入探讨大语言模型与联邦学习的融合。我们提出了一个研究框架,将大语言模型与联邦学习的融合分为三个部分:大语言模型子技术与联邦学习的结合、联邦学习子技术与大语言模型的整合以及大语言模型与联邦学习的整体合并。我们首先全面回顾了大语言模型与联邦学习领域的当前研究现状,包括它们的典型应用、整合优势、面临的挑战以及未来的解决方向。随后,我们讨论了大语言模型与联邦学习相结合在医疗、金融和教育等关键场景中的实际应用,并为大语言模型和联邦学习的未来研究方向提供了新的视角和见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c1/11701858/96abd1ac6ac1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验