Suppr超能文献

使用 MXene 进行光热刺激神经元:细胞应激和光毒性评估。

Photothermal Excitation of Neurons Using MXene: Cellular Stress and Phototoxicity Evaluation.

机构信息

Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.

出版信息

Adv Healthc Mater. 2024 Sep;13(24):e2302330. doi: 10.1002/adhm.202302330. Epub 2023 Oct 5.

Abstract

Understanding the communication of individual neurons necessitates precise control of neural activity. Photothermal modulation is a remote and non-genetic technique to control neural activity with high spatiotemporal resolution. The local heat release by photothermally active nanomaterial will change the membrane properties of the interfaced neurons during light illumination. Recently, it is demonstrated that the two-dimensional TiCT MXene is an outstanding candidate to photothermally excite neurons with low incident energy. However, the safety of using TiCT for neural modulation is unknown. Here, the biosafety of TiCT-based photothermal modulation is thoroughly investigated, including assessments of plasma membrane integrity, mitochondrial stress, and oxidative stress. It is demonstrated that culturing neurons on 25 µg cm TiCT films and illuminating them with laser pulses (635 nm) with different incident energies (2-10 µJ per pulse) and different pulse frequencies (1 pulse, 1 Hz, and 10 Hz) neither damage the cell membrane, induce cellular stress, nor generate oxidative stress. The threshold energy to cause damage (i.e., 14 µJ per pulse) exceeded the incident energy for neural excitation (<10 µJ per pulse). This multi-assay safety evaluation provides crucial insights for guiding the establishment of light conditions and protocols in the clinical translation of photothermal modulation.

摘要

理解单个神经元的通讯需要精确控制神经活动。光热调节是一种远程且非遗传的技术,可以实现高时空分辨率的神经活动控制。光热活性纳米材料的局部热释放会在光照射期间改变界面神经元的膜特性。最近,已经证明二维 TiCT MXene 是一种用低入射能量光热激发神经元的出色候选材料。然而,使用 TiCT 进行神经调节的安全性尚不清楚。在这里,我们彻底研究了基于 TiCT 的光热调节的生物安全性,包括对质膜完整性、线粒体应激和氧化应激的评估。结果表明,在培养神经元的 25μg/cm TiCT 薄膜上,用不同入射能量(每脉冲 2-10μJ)和不同脉冲频率(1 脉冲、1Hz 和 10Hz)的激光脉冲照射,不会损坏细胞膜、诱导细胞应激,也不会产生氧化应激。引起损伤的阈值能量(即每脉冲 14μJ)超过了神经激发的入射能量(<10μJ 每脉冲)。这种多指标安全评估为指导光条件的建立和光热调节的临床转化提供了重要的见解。

相似文献

3
TiCT MXene Flakes for Optical Control of Neuronal Electrical Activity.TiCT MXene 薄片用于光学控制神经元电活动。
ACS Nano. 2021 Sep 28;15(9):14662-14671. doi: 10.1021/acsnano.1c04431. Epub 2021 Aug 25.

本文引用的文献

1
Neural modulation with photothermally active nanomaterials.光热活性纳米材料用于神经调节。
Nat Rev Bioeng. 2023 Mar;1(3):193-207. doi: 10.1038/s44222-023-00022-y. Epub 2023 Jan 31.
6
7
Graphene nanostructures for input-output bioelectronics.用于输入-输出生物电子学的石墨烯纳米结构。
Biophys Rev (Melville). 2021 Dec;2(4):041304. doi: 10.1063/5.0073870. Epub 2021 Dec 29.
9
Time for NanoNeuro.纳米神经学时间。
Nat Methods. 2021 Nov;18(11):1287-1293. doi: 10.1038/s41592-021-01270-9. Epub 2021 Oct 18.
10
TiCT MXene Flakes for Optical Control of Neuronal Electrical Activity.TiCT MXene 薄片用于光学控制神经元电活动。
ACS Nano. 2021 Sep 28;15(9):14662-14671. doi: 10.1021/acsnano.1c04431. Epub 2021 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验