Suppr超能文献

基于深度学习的决策支持系统的超参数优化器用于乳腺癌组织病理学诊断

Hyperparameter Optimizer with Deep Learning-Based Decision-Support Systems for Histopathological Breast Cancer Diagnosis.

作者信息

Obayya Marwa, Maashi Mashael S, Nemri Nadhem, Mohsen Heba, Motwakel Abdelwahed, Osman Azza Elneil, Alneil Amani A, Alsaid Mohamed Ibrahim

机构信息

Department of Biomedical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

Department of Software Engineering, College of Computer and Information Science, King Saud University, Riyadh 11543, Saudi Arabia.

出版信息

Cancers (Basel). 2023 Jan 31;15(3):885. doi: 10.3390/cancers15030885.

Abstract

Histopathological images are commonly used imaging modalities for breast cancer. As manual analysis of histopathological images is difficult, automated tools utilizing artificial intelligence (AI) and deep learning (DL) methods should be modelled. The recent advancements in DL approaches will be helpful in establishing maximal image classification performance in numerous application zones. This study develops an arithmetic optimization algorithm with deep-learning-based histopathological breast cancer classification (AOADL-HBCC) technique for healthcare decision making. The AOADL-HBCC technique employs noise removal based on median filtering (MF) and a contrast enhancement process. In addition, the presented AOADL-HBCC technique applies an AOA with a SqueezeNet model to derive feature vectors. Finally, a deep belief network (DBN) classifier with an Adamax hyperparameter optimizer is applied for the breast cancer classification process. In order to exhibit the enhanced breast cancer classification results of the AOADL-HBCC methodology, this comparative study states that the AOADL-HBCC technique displays better performance than other recent methodologies, with a maximum accuracy of 96.77%.

摘要

组织病理学图像是乳腺癌常用的成像方式。由于对组织病理学图像进行人工分析很困难,因此应建立利用人工智能(AI)和深度学习(DL)方法的自动化工具。DL方法的最新进展将有助于在众多应用领域建立最大的图像分类性能。本研究开发了一种基于深度学习的组织病理学乳腺癌分类算术优化算法(AOADL-HBCC)技术,用于医疗决策。AOADL-HBCC技术采用基于中值滤波(MF)的噪声去除和对比度增强过程。此外,所提出的AOADL-HBCC技术应用带有SqueezeNet模型的算术优化算法来导出特征向量。最后,将带有Adamax超参数优化器的深度信念网络(DBN)分类器应用于乳腺癌分类过程。为了展示AOADL-HBCC方法在乳腺癌分类方面的增强效果,这项对比研究表明,AOADL-HBCC技术比其他近期方法表现更好,最高准确率达到96.77%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b09/9913140/52d2ded3b723/cancers-15-00885-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验