Wu Tong, Chen Xianhui, Fei Yating, Huang Guopu, Deng Yingjiao, Wang Yingjie, Yang Anming, Chen Zhiyong, Lemcoff N Gabriel, Feng Xinxin, Bai Yugang
State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
Nat Chem Biol. 2025 May;21(5):779-789. doi: 10.1038/s41589-024-01819-7. Epub 2025 Jan 8.
Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein. The approach allows for high ArM loading and stabilization by localizing the ArMs within the phase-separated regions. Consequently, the performance of ArM-based whole-cell catalysts is improved, with a demonstrated turnover per cell of up to 7.1 × 10 for the olefin metathesis reaction. Furthermore, we apply this to an engineered E. coli system in live mice, where host bacterial cells confine the metal catalytic species, and in a mouse colorectal cancer model, where ArM-containing whole-cell catalysts mediate concurrent reactions to activate prodrugs.
整合在全细胞内的人工金属酶(ArMs)已成为有前景的催化剂;然而,它们对金属中心的敏感性仍然是一个系统性挑战,导致活性和周转率降低。在这里,我们通过一种自标记融合蛋白HaloTag-SNAPTag在细胞内诱导液-液相分离来解决这个问题。该策略在大肠杆菌内创建无膜的、孤立的液体凝聚物,作为使用相同融合蛋白组装ArMs的保护隔室。该方法通过将ArMs定位在相分离区域内实现了高ArM负载和稳定化。因此,基于ArM的全细胞催化剂的性能得到了改善,在烯烃复分解反应中每个细胞的周转率高达7.1×10。此外,我们将此应用于活小鼠体内的工程化大肠杆菌系统,其中宿主细菌细胞限制金属催化物种,以及在小鼠结直肠癌模型中,含ArM的全细胞催化剂介导同时发生的反应以激活前药。