Suppr超能文献

用于整合脑节点和网络预测因子的贝叶斯阈值建模

Bayesian thresholded modeling for integrating brain node and network predictors.

作者信息

Sun Zhe, Xu Wanwan, Li Tianxi, Kang Jian, Alanis-Lobato Gregorio, Zhao Yize

机构信息

Department of Biostatistics, Yale University, 300 George St, New Haven, CT 06511, United States.

School of Statistics, University of Minnesota, 224 Church St SE, Minneapolis, MN 55455, United States.

出版信息

Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae048.

Abstract

Progress in neuroscience has provided unprecedented opportunities to advance our understanding of brain alterations and their correspondence to phenotypic profiles. With data collected from various imaging techniques, studies have integrated different types of information ranging from brain structure, function, or metabolism. More recently, an emerging way to categorize imaging traits is through a metric hierarchy, including localized node-level measurements and interactive network-level metrics. However, limited research has been conducted to integrate these different hierarchies and achieve a better understanding of the neurobiological mechanisms and communications. In this work, we address this literature gap by proposing a Bayesian regression model under both vector-variate and matrix-variate predictors. To characterize the interplay between different predicting components, we propose a set of biologically plausible prior models centered on an innovative joint thresholded prior. This captures the coupling and grouping effect of signal patterns, as well as their spatial contiguity across brain anatomy. By developing a posterior inference, we can identify and quantify the uncertainty of signaling node- and network-level neuromarkers, as well as their predictive mechanism for phenotypic outcomes. Through extensive simulations, we demonstrate that our proposed method outperforms the alternative approaches substantially in both out-of-sample prediction and feature selection. By implementing the model to study children's general mental abilities, we establish a powerful predictive mechanism based on the identified task contrast traits and resting-state sub-networks.

摘要

神经科学的进展为增进我们对大脑改变及其与表型特征的对应关系的理解提供了前所未有的机会。通过从各种成像技术收集的数据,研究整合了从脑结构、功能或代谢等不同类型的信息。最近,一种对成像特征进行分类的新兴方法是通过度量层次结构,包括局部节点级测量和交互式网络级度量。然而,为整合这些不同层次结构并更好地理解神经生物学机制和通信所开展的研究有限。在这项工作中,我们通过在向量变量和矩阵变量预测器下提出贝叶斯回归模型来填补这一文献空白。为了描述不同预测成分之间的相互作用,我们提出了一组基于创新的联合阈值先验的具有生物学合理性的先验模型。这捕获了信号模式的耦合和分组效应,以及它们在脑解剖结构上的空间连续性。通过进行后验推断,我们可以识别和量化信号节点级和网络级神经标记物的不确定性,以及它们对表型结果的预测机制。通过广泛的模拟,我们证明了我们提出的方法在样本外预测和特征选择方面均显著优于其他方法。通过将该模型应用于研究儿童的一般心理能力,我们基于所识别的任务对比特征和静息态子网建立了一个强大的预测机制。

相似文献

1
Bayesian thresholded modeling for integrating brain node and network predictors.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae048.
3
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.
4
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
5
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.
J Psychiatr Ment Health Nurs. 2024 Aug;31(4):681-698. doi: 10.1111/jpm.13023. Epub 2024 Jan 17.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
8
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
9
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
10
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

本文引用的文献

1
Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process.
J Am Stat Assoc. 2024;119(545):422-433. doi: 10.1080/01621459.2022.2123336. Epub 2022 Nov 28.
2
Statistical Learning Methods for Neuroimaging Data Analysis with Applications.
Annu Rev Biomed Data Sci. 2023 Aug 10;6:73-104. doi: 10.1146/annurev-biodatasci-020722-100353. Epub 2023 Apr 26.
3
Multimodal Image Classification by Multiview Latent Pattern Extraction, Selection, and Correlation.
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8134-8148. doi: 10.1109/TNNLS.2022.3224946. Epub 2024 Jun 3.
4
Bayesian Graphical Regression.
J Am Stat Assoc. 2019;114(525):184-197. doi: 10.1080/01621459.2017.1389739. Epub 2018 Jun 28.
5
Bayesian network mediation analysis with application to the brain functional connectome.
Stat Med. 2022 Sep 10;41(20):3991-4005. doi: 10.1002/sim.9488. Epub 2022 Jul 6.
6
Bayesian interaction selection model for multimodal neuroimaging data analysis.
Biometrics. 2023 Jun;79(2):655-668. doi: 10.1111/biom.13648. Epub 2022 Mar 20.
7
Tucker Tensor Regression and Neuroimaging Analysis.
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.
8
Bayesian Scalar on Image Regression With Nonignorable Nonresponse.
J Am Stat Assoc. 2020;115(532):1574-1597. doi: 10.1080/01621459.2019.1686391. Epub 2019 Dec 12.
9
Learning Clique Subgraphs in Structural Brain Network Classification with Application to Crystallized Cognition.
Neuroimage. 2021 Jan 15;225:117493. doi: 10.1016/j.neuroimage.2020.117493. Epub 2020 Oct 24.
10
Multimodal neuroimaging data integration and pathway analysis.
Biometrics. 2021 Sep;77(3):879-889. doi: 10.1111/biom.13351. Epub 2020 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验