Suppr超能文献

脱氢酶氧化酶功能:底物结合与黄素微环境之间的相互作用。

Dehydrogenase oxidase function: the interplay between substrate binding and flavin microenvironment.

作者信息

Guerriere Teresa Benedetta, Vancheri Alessandro, Ricotti Ilaria, Serapian Stefano A, Eggerichs Daniel, Tischler Dirk, Colombo Giorgio, Mascotti Maria L, Fraaije Marco W, Mattevi Andrea

机构信息

Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy 27100.

Department of Chemistry, University of Pavia, 27100 Pavia, Italy.

出版信息

ACS Catal. 2025 Jan 17;15(2):1046-1060. doi: 10.1021/acscatal.4c05944. Epub 2025 Jan 2.

Abstract

Redox enzymes, mostly equipped with metal or organic cofactors, can vary their reactivity with oxygen by orders of magnitudes. Understanding how oxygen reactivity is controlled by the protein milieu remains an open issue with broad implications for mechanistic enzymology and enzyme design. Here, we address this problem by focusing on a widespread group of flavoenzymes that oxidize phenolic compounds derived from microbial lignin degradation, using either oxygen or a cytochrome c as electron acceptors. A comprehensive phylogenetic analysis revealed conserved amino acid motifs in their flavin-binding site. Using a combination of kinetics, mutagenesis, structural, and computational methods, we examined the role of these residues. Our results demonstrate that subtle and localized changes in the flavin environment can drastically impact on oxygen reactivity. These effects are afforded through the creation or blockade of pathways for oxygen diffusion. Substrate binding plays a crucial role by potentially obstructing oxygen access to the flavin, thus influencing the enzyme's reactivity. The switch between oxidase and dehydrogenase functionalities is thereby achieved through targeted, site-specific amino acid replacements that finely tune the microenvironment around the flavin. Our findings explain how very similar enzymes can exhibit distinct functional properties, operating as oxidases or dehydrogenases. They further provide valuable insights for the rational design and engineering of enzymes with tailored functions.

摘要

氧化还原酶大多配备有金属或有机辅因子,其与氧气的反应活性可在几个数量级范围内变化。了解氧气反应活性如何受蛋白质环境控制仍是一个悬而未决的问题,对酶学机理和酶设计具有广泛影响。在此,我们通过聚焦一类广泛存在的黄素酶来解决这个问题,这类黄素酶利用氧气或细胞色素c作为电子受体,氧化源自微生物木质素降解的酚类化合物。全面的系统发育分析揭示了其黄素结合位点中保守的氨基酸基序。我们结合动力学、诱变、结构和计算方法,研究了这些残基的作用。我们的结果表明,黄素环境中细微和局部的变化会极大地影响氧气反应活性。这些影响是通过创建或阻断氧气扩散途径实现的。底物结合可能通过阻碍氧气接近黄素而发挥关键作用,从而影响酶的反应活性。氧化酶和脱氢酶功能之间的转换由此通过有针对性的、位点特异性的氨基酸替换来实现,这些替换精细地调节了黄素周围的微环境。我们的发现解释了非常相似的酶如何能够表现出不同的功能特性,作为氧化酶或脱氢酶发挥作用。它们还为合理设计和工程改造具有定制功能的酶提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0708/7617285/d8646fee76e7/EMS201890-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验