Harding S E
Biophys J. 1985 Feb;47(2 Pt 1):247-50. doi: 10.1016/s0006-3495(85)83898-4.
It is relatively easy to represent by computer simulation the observed Rayleigh equilibrium fringe data for systems that are both associative and nonideal in the thermodynamic sense, and to extract the determinant parameters (see, for example, Roark, D., and D. A. Yphantis, 1969, Ann. NY Acad. Sci., 164:245-278; and Johnson M. L., J. J. Correia, D. A. Yphantis, and H. R. Halvorson, 1981, Biophys. J., 36:575-588). It is, however, considerably more difficult to represent systems that are both polydisperse (namely, those that consist of noninteracting species of different molecular weight) and nonideal, although the ideal case has been well described (see, for example, Tindall, S. H., and K. C. Aune, 1982, Anal. Biochem. 120:71-84). Here we show that the representation of nonideal polydisperse systems is now possible, after certain assumptions, by using a two-part interdependent minimization routine that uses readily available numerical packages. The method is applied to a well-characterized mucus glycoprotein (Mr approximately 2 X 10(6)) from the bronchial secretion of a cystic fibrosis patient. An excellent fit to the observed fringe data is obtained for a polydisperse three-component system, with a value for the second virial coefficient, B, of 0.57 ml mol g-2.
通过计算机模拟来表示那些在热力学意义上既具有缔合性又非理想的系统所观察到的瑞利平衡条纹数据,并提取决定性参数相对较为容易(例如,参见Roark, D.和D. A. Yphantis, 1969, 《纽约科学院学报》, 164:245 - 278;以及Johnson M. L., J. J. Correia, D. A. Yphantis和H. R. Halvorson, 1981, 《生物物理学杂志》, 36:575 - 588)。然而,要表示那些既多分散(即由不同分子量的非相互作用物种组成)又非理想的系统则困难得多,尽管理想情况已得到很好的描述(例如,参见Tindall, S. H.和K. C. Aune, 1982, 《分析生物化学》120:71 - 84)。在这里我们表明,在做出某些假设后,通过使用一个两部分相互依赖的最小化程序,并利用现成的数值软件包,现在可以实现对非理想多分散系统的表示。该方法应用于来自一名囊性纤维化患者支气管分泌物的一种特征明确的黏液糖蛋白(相对分子质量约为2×10⁶)。对于一个多分散的三组分系统,获得了与观察到的条纹数据的极佳拟合,第二维里系数B的值为0.57 ml mol g⁻²。