Liu Shuyao, Lu Ming, Zhang Meihua, Sun Xiaoqing, Luo Bin, Wu Yao
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
Analytical and Testing Center, Sichuan University, Chengdu 610064, P. R. China.
ACS Nano. 2025 Jan 21;19(2):2677-2694. doi: 10.1021/acsnano.4c14596. Epub 2025 Jan 9.
Regeneration of diabetic bone defects remains a formidable challenge due to the chronic hyperglycemic state, which triggers the accumulation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To address this issue, we have engineered a bimetallic metal-organic framework-derived Mn@CoO@Pt nanoenzyme loaded with alendronate and Mg ions (termed MCPtA) to regulate the hyperglycemic microenvironment and recover the osteogenesis/osteoclast homeostasis. Notably, the Mn atom substitution in the CoO nanocrystalline structure could modulate the electronic structure and significantly improve the SOD/CAT catalytic activity for ROS scavenging. By integration with GOx-like Pt nanoparticles, the MCPtA achieved effective multiple cascade catalytic performance that facilitated the clearance of glucose and ROS. Furthermore, the MCPtA was encapsulated within a glucose-responsive hydrogel cross-linked via a borate ester bond, termed PAM, to evaluate the potential of the composite hydrogel for cranial defect repair in diabetic rats. The in vitro/vivo experiments as well as the RNA sequencing analysis demonstrated that the nanoenzyme composite hydrogel could disrupt the glucose-ROS-induced inflammation and promoted osteogenesis and angiogenesis, in consequence, improving the therapeutic effects for diabetic bone regeneration. This study provided crucial insights into nanoenzyme-mediated microenvironmental regulation for diabetic bone regeneration.
由于慢性高血糖状态会引发晚期糖基化终产物(AGEs)和活性氧(ROS)的积累,糖尿病骨缺损的再生仍然是一项艰巨的挑战。为了解决这个问题,我们设计了一种负载阿仑膦酸盐和镁离子的双金属金属有机框架衍生的Mn@CoO@Pt纳米酶(称为MCPtA),以调节高血糖微环境并恢复成骨/破骨细胞稳态。值得注意的是,CoO纳米晶体结构中的Mn原子取代可以调节电子结构,并显著提高清除ROS的SOD/CAT催化活性。通过与类GOx的Pt纳米颗粒整合,MCPtA实现了有效的多级联催化性能,促进了葡萄糖和ROS的清除。此外,MCPtA被包裹在通过硼酸酯键交联的葡萄糖响应水凝胶中,称为PAM,以评估复合水凝胶对糖尿病大鼠颅骨缺损修复的潜力。体外/体内实验以及RNA测序分析表明,纳米酶复合水凝胶可以破坏葡萄糖-ROS诱导的炎症,促进成骨和血管生成,从而提高糖尿病骨再生的治疗效果。这项研究为纳米酶介导的糖尿病骨再生微环境调节提供了关键见解。