Suppr超能文献

通过影像组学特征对胃癌血管内皮生长因子及预后进行无创评估

Noninvasive Assessment of Vascular Endothelial Growth Factor and Prognosis in Gastric Cancer Through Radiomic Features.

作者信息

Feng Hao, Zhou Kangneng, Yuan Qingyu, Liu Zhiwei, Zhang Taojun, Chen Hao, Xu Benjamin, Sun Zepang, Han Zhen, Liu Hao, Yu Shitong, Chen Tao, Li Guoxin, Zhou Wenlan, Yu Jiang, Huang Weicai, Jiang Yuming

机构信息

Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China.

College of Computer Science, Nankai University, Tianjin, China.

出版信息

Clin Transl Gastroenterol. 2025 Mar 1;16(3):e00802. doi: 10.14309/ctg.0000000000000802.

Abstract

INTRODUCTION

Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide, with delayed diagnosis often limiting effective treatment options. This study introduces a novel, noninvasive radiomics-based approach using [18F] FDG PET/CT (fluorodeoxyglucose positron emission tomography/computed tomography) to predict vascular endothelial growth factor (VEGF) status and survival in patients with GC. The ability to noninvasively assess these parameters can significantly influence therapeutic decisions and outcomes.

METHODS

We conducted a retrospective study involving patients diagnosed with GC, stratified into training, validation, and test groups. Each patient underwent a [18F] FDG PET/CT scan, and radiomic features were extracted using dedicated software. A Radiomics Score (RS) was calculated, serving as a predictor for VEGF status. Statistical analyses included logistic regression and Cox proportional hazards models to evaluate the predictive power of RS on survival outcomes.

RESULTS

The developed radiomics model demonstrated high predictive accuracy, with the RS formula achieving an area under the receiver operating characteristic curve of 0.861 in the training cohort and 0.857 in the validation cohort for predicting VEGF status. The model also identified RS as an independent prognostic factor for survival, where higher RS values correlated with poorer survival rates.

DISCUSSION

The findings underscore the potential of [18F] FDG PET/CT radiomics in transforming the management of GC by providing a noninvasive means to assess tumor aggressiveness and prognosis through VEGF status. This model could facilitate earlier and more tailored therapeutic interventions, potentially improving survival outcomes in a disease marked by typically late diagnosis and limited treatment success.

摘要

引言

胃癌(GC)是全球癌症相关死亡的主要原因之一,诊断延迟常常限制了有效的治疗选择。本研究引入了一种基于[18F]氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(FDG PET/CT)的新型非侵入性放射组学方法,以预测胃癌患者的血管内皮生长因子(VEGF)状态和生存率。非侵入性评估这些参数的能力可显著影响治疗决策和结果。

方法

我们进行了一项回顾性研究,纳入了被诊断为胃癌的患者,并将其分为训练组、验证组和测试组。每位患者均接受了[18F] FDG PET/CT扫描,并使用专用软件提取放射组学特征。计算放射组学评分(RS),作为VEGF状态的预测指标。统计分析包括逻辑回归和Cox比例风险模型,以评估RS对生存结果的预测能力。

结果

所开发的放射组学模型显示出较高的预测准确性,RS公式在训练队列中预测VEGF状态时,受试者操作特征曲线下面积为0.861,在验证队列中为0.857。该模型还将RS确定为生存的独立预后因素,较高的RS值与较差的生存率相关。

讨论

研究结果强调了[18F] FDG PET/CT放射组学在改变胃癌管理方面的潜力,通过提供一种非侵入性手段,通过VEGF状态评估肿瘤侵袭性和预后。该模型可促进更早、更具针对性的治疗干预,有可能改善这种通常诊断较晚且治疗成功率有限的疾病的生存结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4639/11932601/67f2d69d0709/ct9-16-e00802-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验