Geysens Mathilde, Huremagic Benjamin, Souche Erika, Breckpot Jeroen, Devriendt Koenraad, Peeters Hilde, Van Buggenhout Griet, Van Esch Hilde, Van Den Bogaert Kris, Vermeesch Joris Robert
Laboratory of Cytogenetics and Genome Research, Centre for Human Genetics, KU Leuven, Leuven, 3000, Belgium.
Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium.
Genome Med. 2025 Jan 10;17(1):1. doi: 10.1186/s13073-024-01419-z.
A subset of developmental disorders (DD) is characterized by disease-specific genome-wide methylation changes. These episignatures inform on the underlying pathogenic mechanisms and can be used to assess the pathogenicity of genomic variants as well as confirm clinical diagnoses. Currently, the detection of these episignature requires the use of indirect methylation profiling methodologies. We hypothesized that long-read whole genome sequencing would not only enable the detection of single nucleotide variants and structural variants but also episignatures.
Genome-wide nanopore sequencing was performed in 40 controls and 20 patients with confirmed or suspected episignature-associated DD, representing 13 distinct diseases. Following genomic variant and methylome calling, hierarchical clustering and dimensional reduction were used to determine the compatibility with microarray-based episignatures. Subsequently, we developed a support vector machine (SVM) for the detection of each DD.
Nanopore sequencing-based methylome patterns were concordant with microarray-based episignatures. Our SVM-based classifier identified the episignatures in 17/19 patients with a (likely) pathogenic variant and none of the controls. The remaining patients in which no episignature was identified were also classified as controls by a commercial microarray assay. In addition, we identified all underlying pathogenic single nucleotide and structural variants and showed haplotype-aware skewed X-inactivation evaluation directs clinical interpretation.
This proof-of-concept study demonstrates nanopore sequencing enables episignature detection. In addition, concurrent haplotyped genomic and epigenomic analyses leverage simultaneous detection of single nucleotide/structural variants, X-inactivation, and imprinting, consolidating a multi-step sequential process into a single diagnostic assay.
一部分发育障碍(DD)的特征是全基因组范围内存在疾病特异性的甲基化变化。这些表观遗传特征揭示了潜在的致病机制,可用于评估基因组变异的致病性以及确认临床诊断。目前,这些表观遗传特征的检测需要使用间接甲基化分析方法。我们推测长读长全基因组测序不仅能够检测单核苷酸变异和结构变异,还能检测表观遗传特征。
对40名对照者和20名确诊或疑似与表观遗传特征相关的发育障碍患者进行了全基因组纳米孔测序,这些患者代表13种不同疾病。在进行基因组变异和甲基化组分析后,使用层次聚类和降维来确定与基于微阵列的表观遗传特征的兼容性。随后,我们开发了一种支持向量机(SVM)用于检测每种发育障碍。
基于纳米孔测序的甲基化组模式与基于微阵列的表观遗传特征一致。我们基于支持向量机的分类器在19名携带(可能)致病变异的患者中的17名中识别出了表观遗传特征,而对照者中无一例被识别出。其余未识别出表观遗传特征的患者通过商业微阵列检测也被归类为对照者。此外,我们识别出了所有潜在的致病单核苷酸和结构变异,并表明单倍型感知的偏态X染色体失活评估指导了临床解释。
这项概念验证研究表明纳米孔测序能够检测表观遗传特征。此外,同时进行的单倍型基因组和表观基因组分析利用了单核苷酸/结构变异、X染色体失活和印记的同步检测,将一个多步骤的连续过程整合为一个单一的诊断检测方法。