Holfinger Steven, Schutte-Rodin Sharon, Ratnasoma Dulip, Chiang Ambrose A, Baron Kelly, Deak Maryann, Jerkins Evin, Baughn Julie, Gipson Kevin, Gruber Reut, Miller Jennifer N, Paruthi Shalini, Shah Sachin, Bandyopadhyay Anuja
The Ohio State University, Columbus, Ohio.
University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
J Clin Sleep Med. 2025 May 1;21(5):891-905. doi: 10.5664/jcsm.11562.
To update sleep medicine providers regarding (1) published research on the uses and performance of novel sleep tracking and testing technologies, (2) the use of artificial intelligence to acquire and process sleep data, and (3) research trends and gaps regarding the development and/or evaluation of these technologies.
Medline and Embase electronic databases were searched for studies utilizing screening and diagnostic sleep technologies, published between 2020 and 2022 in journals focusing on human sleep. Studies' quality was determined based on the Study Design criteria of The Oxford Center for Evidence-Based Medicine Levels of Evidence.
Ninety-six of 3,849 articles were included. Most studies were adult performance evaluation (validation) studies, often comparing a novel technology to polysomnography. Sleep tracker publications tended to be Unites States-based, nonindustry-funded, performance studies on healthy adults using non-Food and Drug Administration-cleared technologies. Sleep apnea testing technologies were more frequently industry-funded and Food and Drug Administration-cleared. All studied technologies utilized software with an algorithm and/or artificial intelligence. Few studies used randomized control designs, or accounted for recruitment/attrition biases associated with participants' age, race/ethnicity, or comorbid health conditions.
Evidence-based publications have not kept pace with the proliferation and landscape of consumer and clinical sleep technologies. Due to the variance in technologies used within sleep research, careful review of the software used within studies is recommended. Future publications may fill identified gaps by including underrepresented populations, maintaining independence from industry, and through rigorous study design.
Holfinger S, Schutte-Rodin S, Ratnasoma D, et al. Evolving trends in novel sleep tracking and sleep testing technology publications between 2020 and 2022. . 2025;21(5):891-905.
向睡眠医学从业者介绍以下内容:(1)关于新型睡眠追踪和检测技术的用途及性能的已发表研究;(2)利用人工智能获取和处理睡眠数据的情况;(3)这些技术开发和/或评估方面的研究趋势及差距。
检索Medline和Embase电子数据库,查找2020年至2022年期间发表在专注于人类睡眠的期刊上的、利用筛查和诊断睡眠技术的研究。根据牛津循证医学中心证据水平的研究设计标准确定研究质量。
3849篇文章中有96篇被纳入。大多数研究是成人性能评估(验证)研究,通常将新技术与多导睡眠图进行比较。睡眠追踪器的出版物往往以美国为基地,由非行业资助,是关于使用未经美国食品药品监督管理局批准的技术对健康成年人进行的性能研究。睡眠呼吸暂停检测技术更频繁地得到行业资助且经过美国食品药品监督管理局批准。所有研究的技术都使用带有算法和/或人工智能的软件。很少有研究采用随机对照设计,或考虑与参与者年龄、种族/民族或合并健康状况相关的招募/损耗偏差。
循证出版物未能跟上消费级和临床睡眠技术的扩散及发展态势。由于睡眠研究中使用的技术存在差异,建议仔细审查研究中使用的软件。未来的出版物可以通过纳入代表性不足的人群、保持与行业的独立性以及采用严格的研究设计来填补已发现的差距。
Holfinger S, Schutte-Rodin S, Ratnasoma D等。2020年至2022年新型睡眠追踪和睡眠检测技术出版物的发展趋势。. 2025;21(5):891-905。