Suppr超能文献

深度学习基于淋巴结状态预测胃癌组织病理学预后:一项回顾性多中心研究。

Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology: a retrospective multicentric study.

机构信息

Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany; Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.

Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany.

出版信息

Eur J Cancer. 2023 Nov;194:113335. doi: 10.1016/j.ejca.2023.113335. Epub 2023 Sep 12.

Abstract

AIM

Gastric cancer (GC) is a tumour entity with highly variant outcomes. Lymph node metastasis is a prognostically adverse biomarker. We hypothesised that GC primary tissue contains information that is predictive of lymph node status and patient prognosis and that this information can be extracted using deep learning (DL).

METHODS

Using three patient cohorts comprising 1146 patients, we trained and validated a DL system to predict lymph node status directly from haematoxylin and eosin-stained GC tissue sections. We investigated the concordance between the DL-based prediction from the primary tumour slides (aiN score) and the histopathological lymph node status (pN). Furthermore, we assessed the prognostic value of the aiN score alone and when combined with the pN status.

RESULTS

The aiN score predicted the pN status reaching area under the receiver operating characteristic curves of 0.71 in the training cohort and 0.69 and 0.65 in the two test cohorts. In a multivariate Cox analysis, the aiN score was an independent predictor of patient survival with hazard ratios of 1.5 in the training cohort and of 1.3 and 2.2 in the two test cohorts. A combination of the aiN score and the pN status prognostically stratified patients by survival with p-values <0.05 in logrank tests.

CONCLUSION

GC primary tumour tissue contains additional prognostic information that is accessible using the aiN score. In combination with the pN status, this can be used for personalised management of GC patients after prospective validation.

摘要

目的

胃癌(GC)是一种预后差异极大的肿瘤实体。淋巴结转移是一种预后不良的生物标志物。我们假设 GC 原发组织中包含可预测淋巴结状态和患者预后的信息,并且可以使用深度学习(DL)提取这些信息。

方法

使用包含 1146 名患者的三个患者队列,我们训练和验证了一个 DL 系统,以直接从苏木精和伊红染色的 GC 组织切片预测淋巴结状态。我们研究了基于原发性肿瘤切片的 DL 预测(aiN 评分)与组织病理学淋巴结状态(pN)之间的一致性。此外,我们评估了 aiN 评分单独以及与 pN 状态结合时的预后价值。

结果

aiN 评分预测 pN 状态,在训练队列中的受试者工作特征曲线下面积为 0.71,在两个测试队列中的面积为 0.69 和 0.65。在多变量 Cox 分析中,aiN 评分是患者生存的独立预测因子,在训练队列中的风险比为 1.5,在两个测试队列中的风险比为 1.3 和 2.2。aiN 评分与 pN 状态的组合通过对数秩检验显示出具有统计学意义的生存分层,p 值均<0.05。

结论

GC 原发性肿瘤组织中包含可通过 aiN 评分获取的额外预后信息。与 pN 状态结合使用,可在前瞻性验证后用于 GC 患者的个体化管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验