Brussee Siemen, Buzzanca Giorgio, Schrader Anne M R, Kers Jesper
Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
Med Image Anal. 2025 Apr;101:103444. doi: 10.1016/j.media.2024.103444. Epub 2025 Jan 7.
Histopathological analysis of whole slide images (WSIs) has seen a surge in the utilization of deep learning methods, particularly Convolutional Neural Networks (CNNs). However, CNNs often fail to capture the intricate spatial dependencies inherent in WSIs. Graph Neural Networks (GNNs) present a promising alternative, adept at directly modeling pairwise interactions and effectively discerning the topological tissue and cellular structures within WSIs. Recognizing the pressing need for deep learning techniques that harness the topological structure of WSIs, the application of GNNs in histopathology has experienced rapid growth. In this comprehensive review, we survey GNNs in histopathology, discuss their applications, and explore emerging trends that pave the way for future advancements in the field. We begin by elucidating the fundamentals of GNNs and their potential applications in histopathology. Leveraging quantitative literature analysis, we explore four emerging trends: Hierarchical GNNs, Adaptive Graph Structure Learning, Multimodal GNNs, and Higher-order GNNs. Through an in-depth exploration of these trends, we offer insights into the evolving landscape of GNNs in histopathological analysis. Based on our findings, we propose future directions to propel the field forward. Our analysis serves to guide researchers and practitioners towards innovative approaches and methodologies, fostering advancements in histopathological analysis through the lens of graph neural networks.
在全切片图像(WSIs)的组织病理学分析中,深度学习方法,尤其是卷积神经网络(CNNs)的应用激增。然而,CNNs往往无法捕捉WSIs中固有的复杂空间依赖性。图神经网络(GNNs)是一种很有前途的替代方法,它擅长直接对成对相互作用进行建模,并能有效识别WSIs中的拓扑组织和细胞结构。鉴于迫切需要利用WSIs拓扑结构的深度学习技术,GNNs在组织病理学中的应用迅速发展。在这篇全面的综述中,我们考察了GNNs在组织病理学中的应用,讨论了它们的应用,并探索了为该领域未来发展铺平道路的新兴趋势。我们首先阐述了GNNs的基本原理及其在组织病理学中的潜在应用。利用定量文献分析,我们探索了四个新兴趋势:分层GNNs、自适应图结构学习、多模态GNNs和高阶GNNs。通过对这些趋势的深入探索,我们深入了解了GNNs在组织病理学分析中不断变化的格局。基于我们的研究结果,我们提出了推动该领域向前发展的未来方向。我们的分析旨在引导研究人员和从业者采用创新方法和技术,通过图神经网络推动组织病理学分析的发展。