Suppr超能文献

多染色病理成像中的图神经网络:放射组学特征的扩展比较分析

Graph neural networks in multi-stained pathological imaging: extended comparative analysis of Radiomic features.

作者信息

Rivera Monroy Luis Carlos, Rist Leonhard, Ostalecki Christian, Bauer Andreas, Vera Julio, Breininger Katharina, Maier Andreas

机构信息

Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2025 Mar;20(3):497-505. doi: 10.1007/s11548-024-03277-x. Epub 2024 Oct 7.

Abstract

PURPOSE

This study investigates the application of Radiomic features within graph neural networks (GNNs) for the classification of multiple-epitope-ligand cartography (MELC) pathology samples. It aims to enhance the diagnosis of often misdiagnosed skin diseases such as eczema, lymphoma, and melanoma. The novel contribution lies in integrating Radiomic features with GNNs and comparing their efficacy against traditional multi-stain profiles.

METHODS

We utilized GNNs to process multiple pathological slides as cell-level graphs, comparing their performance with XGBoost and Random Forest classifiers. The analysis included two feature types: multi-stain profiles and Radiomic features. Dimensionality reduction techniques such as UMAP and t-SNE were applied to optimize the feature space, and graph connectivity was based on spatial and feature closeness.

RESULTS

Integrating Radiomic features into spatially connected graphs significantly improved classification accuracy over traditional models. The application of UMAP further enhanced the performance of GNNs, particularly in classifying diseases with similar pathological features. The GNN model outperformed baseline methods, demonstrating its robustness in handling complex histopathological data.

CONCLUSION

Radiomic features processed through GNNs show significant promise for multi-disease classification, improving diagnostic accuracy. This study's findings suggest that integrating advanced imaging analysis with graph-based modeling can lead to better diagnostic tools. Future research should expand these methods to a wider range of diseases to validate their generalizability and effectiveness.

摘要

目的

本研究调查图神经网络(GNNs)中放射组学特征在多表位配体图谱(MELC)病理样本分类中的应用。其目的是加强对湿疹、淋巴瘤和黑色素瘤等常被误诊的皮肤病的诊断。新的贡献在于将放射组学特征与GNNs相结合,并将其与传统多染色图谱的功效进行比较。

方法

我们利用GNNs将多个病理切片作为细胞级图进行处理,将其性能与XGBoost和随机森林分类器进行比较。分析包括两种特征类型:多染色图谱和放射组学特征。应用UMAP和t-SNE等降维技术来优化特征空间,图连通性基于空间和特征的接近度。

结果

将放射组学特征整合到空间连接图中,比传统模型显著提高了分类准确率。UMAP的应用进一步提高了GNNs的性能,特别是在对具有相似病理特征的疾病进行分类时。GNN模型优于基线方法,证明了其在处理复杂组织病理学数据方面的稳健性。

结论

通过GNNs处理的放射组学特征对多疾病分类显示出巨大的前景,提高了诊断准确率。本研究结果表明,将先进的成像分析与基于图的建模相结合可以产生更好的诊断工具。未来的研究应将这些方法扩展到更广泛的疾病中,以验证其通用性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d61a/11929635/0a151b7b2f6b/11548_2024_3277_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验