Suppr超能文献

基于深度学习的卵巢癌全切片病理图像组织学分型诊断。

Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images.

机构信息

School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.

Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.

出版信息

Mod Pathol. 2022 Dec;35(12):1983-1990. doi: 10.1038/s41379-022-01146-z. Epub 2022 Sep 5.

Abstract

Ovarian carcinoma has the highest mortality of all female reproductive cancers and current treatment has become histotype-specific. Pathologists diagnose five common histotypes by microscopic examination, however, histotype determination is not straightforward, with only moderate interobserver agreement between general pathologists (Cohen's kappa 0.54-0.67). We hypothesized that machine learning (ML)-based image classification models may be able to recognize ovarian carcinoma histotype sufficiently well that they could aid pathologists in diagnosis. We trained four different artificial intelligence (AI) algorithms based on deep convolutional neural networks to automatically classify hematoxylin and eosin-stained whole slide images. Performance was assessed through cross-validation on the training set (948 slides corresponding to 485 patients), and on an independent test set of 60 patients from another institution. The best-performing model achieved a diagnostic concordance of 81.38% (Cohen's kappa of 0.7378) in our training set, and 80.97% concordance (Cohen's kappa 0.7547) on the external dataset. Eight cases misclassified by ML in the external set were reviewed by two subspecialty pathologists blinded to the diagnoses, molecular and immunophenotype data, and ML-based predictions. Interestingly, in 4 of 8 cases from the external dataset, the expert review pathologists rendered diagnoses, based on blind review of the whole section slides classified by AI, that were in agreement with AI rather than the integrated reference diagnosis. The performance characteristics of our classifiers indicate potential for improved diagnostic performance if used as an adjunct to conventional histopathology.

摘要

卵巢癌是所有女性生殖系统癌症中死亡率最高的,目前的治疗方法已经变得针对特定组织类型。病理学家通过显微镜检查诊断出五种常见的组织类型,然而,组织类型的确定并不简单,普通病理学家之间的观察一致性只有中等水平(Cohen's kappa 0.54-0.67)。我们假设基于机器学习(ML)的图像分类模型可以足够准确地识别卵巢癌的组织类型,从而帮助病理学家进行诊断。我们训练了四种不同的基于深度卷积神经网络的人工智能(AI)算法,以自动对苏木精和伊红染色的全切片图像进行分类。通过在训练集(948 张对应 485 名患者的幻灯片)上进行交叉验证以及在另一家机构的 60 名患者的独立测试集上评估性能。表现最好的模型在我们的训练集中达到了 81.38%的诊断一致性(Cohen's kappa 0.7378),在外部数据集上达到了 80.97%的一致性(Cohen's kappa 0.7547)。在外部数据集中,有 8 个病例被 ML 错误分类,由两名对诊断、分子和免疫表型数据以及基于 ML 的预测均不知情的专科病理学家进行复查。有趣的是,在外部数据集的 8 个病例中,有 4 个病例的专家复查病理学家根据 AI 分类的整个切片的盲法复查结果,做出了与 AI 而非综合参考诊断一致的诊断。我们的分类器的性能特征表明,如果将其用作常规组织病理学的辅助手段,可能会提高诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验