文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

The Electrochemical Detection of Bisphenol A and Catechol in Red Wine.

作者信息

Wang Chao, Wu Xiangchuan, Lin Xinhe, Zhu Xueting, Ma Wei, Chen Jian

机构信息

School of Biotechnology, Jiangnan University, Wuxi 214000, China.

Science Center for Future Foods, Jiangnan University, Wuxi 210023, China.

出版信息

Foods. 2025 Jan 6;14(1):133. doi: 10.3390/foods14010133.


DOI:10.3390/foods14010133
PMID:39796423
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11719882/
Abstract

The use of nanozymes for electrochemical detection in the food industry is an intriguing area of research. In this study, we synthesized a laccase mimicking the MnO@CeO nanozyme using a simple hydrothermal method, which was characterized by modern analytical methods, such as transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), etc. We found that the addition of MnO significantly increased the laccase-like activity by 300% compared to CeO nanorods. Due to the excellent laccase-like activity of the MnO@CeO nanozyme, we developed an electrochemical sensor for the detection of hazardous phenolic compounds such as bisphenol A and catechol in red wines by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). We used the MnO@CeO nanozyme to develop an electrochemical sensor for detecting harmful phenolic compounds like bisphenol A and catechol in red wine due to its excellent laccase-like activity. The MnO@CeO nanorods could be dispersion-modified glassy carbon electrodes (GCEs) by polyethyleneimine (PEI) to achieve a rapid detection of bisphenol A and catechol, with limits of detection as low as 1.2 × 10 M and 7.3 × 10 M, respectively. This approach provides a new way to accurately determine phenolic compounds with high sensitivity, low cost, and stability.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/a9136c10e301/foods-14-00133-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/d7cc2c3d3536/foods-14-00133-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/3cd51ac31c21/foods-14-00133-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/30e3a0286d9c/foods-14-00133-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/f1242d611e02/foods-14-00133-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/84fd71c97fd9/foods-14-00133-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/0c3e72efd08e/foods-14-00133-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/26ce154f1734/foods-14-00133-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/88e45e2ded36/foods-14-00133-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/a9136c10e301/foods-14-00133-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/d7cc2c3d3536/foods-14-00133-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/3cd51ac31c21/foods-14-00133-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/30e3a0286d9c/foods-14-00133-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/f1242d611e02/foods-14-00133-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/84fd71c97fd9/foods-14-00133-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/0c3e72efd08e/foods-14-00133-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/26ce154f1734/foods-14-00133-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/88e45e2ded36/foods-14-00133-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0afc/11719882/a9136c10e301/foods-14-00133-g009.jpg

相似文献

[1]
The Electrochemical Detection of Bisphenol A and Catechol in Red Wine.

Foods. 2025-1-6

[2]
Sensitive and selective electrochemical detection of bisphenol A based on SBA-15 like Cu-PMO modified glassy carbon electrode.

Food Chem. 2021-10-1

[3]
Graphene nanoplatelet supported CeO nanocomposites towards electrocatalytic oxidation of multiple phenolic pollutants.

Anal Chim Acta. 2019-8-17

[4]
Synthesis and characterization of reduced graphene oxide decorated with CeO-doped MnO nanorods for supercapacitor applications.

J Colloid Interface Sci. 2017-1-28

[5]
A colorimetric detection of dopamine in urine and serum based on the CeO @ZIF-8/Cu-CDs laccase-like nanozyme activity.

Luminescence. 2024-2

[6]
A sensitive non-enzymatic electrochemical sensor based on acicular manganese dioxide modified graphene nanosheets composite for hydrogen peroxide detection.

Ecotoxicol Environ Saf. 2019-12-28

[7]
Construction of modified screen-printed graphite electrode for the application in electrochemical detection of sunset yellow in food samples.

Food Chem Toxicol. 2022-8

[8]
Development of a robust method for Cd(II) ions analysis using CeO- and CeO-Cu-BTC-based electrochemical sensors.

Environ Monit Assess. 2024-4-8

[9]
CuO nanorods as a laccase mimicking enzyme for highly sensitive colorimetric and electrochemical dual biosensor: Application in living cell epinephrine analysis.

Colloids Surf B Biointerfaces. 2020-11

[10]
Electrochemical Sensor for Determination of Various Phenolic Compounds in Wine Samples Using FeO Nanoparticles Modified Carbon Paste Electrode.

Micromachines (Basel). 2021-3-17

引用本文的文献

[1]
Electrochemical Biosensors Driving Model Transformation for Food Testing.

Foods. 2025-7-29

本文引用的文献

[1]
Nanoporous electrode with stable polydimethylsiloxane coating for direct electrochemical analysis of bisphenol A in complex wine media.

Food Chem. 2023-3-30

[2]
Remodelling metabolism for high-level resveratrol production in Yarrowia lipolytica.

Bioresour Technol. 2022-12

[3]
Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review.

Chemosphere. 2022-11

[4]
Insights on catalytic mechanism of CeO as multiple nanozymes.

Nano Res. 2022

[5]
CoO Nanozymes with Multiple Catalytic Activities Regulate Atopic Dermatitis.

Nanomaterials (Basel). 2022-2-14

[6]
Targeted killing of tumor cells based on isoelectric point suitable nanoceria-rod with high oxygen vacancies.

J Mater Chem B. 2022-3-2

[7]
A cerium oxide-based nanomedicine for pH-triggered chemodynamic/chemo combination therapy.

J Mater Chem B. 2022-3-2

[8]
Tumor microenvironment activated nanoenzyme-based agents for enhanced MRI-guided photothermal therapy in the NIR-II window.

Chem Commun (Camb). 2022-2-22

[9]
Effects of Nanoceria on Human Platelet Functions and Blood Coagulation.

Int J Nanomedicine. 2022

[10]
Alendronate-Modified Nanoceria with Multiantioxidant Enzyme-Mimetic Activity for Reactive Oxygen Species/Reactive Nitrogen Species Scavenging from Cigarette Smoke.

ACS Appl Mater Interfaces. 2021-10-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索