Huang Peng, Yin Yan, Hu Kaifeng, Yang Weidong
National Key Laboratory of Multispectral Information Intelligent Processing Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430000, China.
Sensors (Basel). 2025 Jan 3;25(1):225. doi: 10.3390/s25010225.
Despite rapid progress in UAV-based infrared vehicle detection, achieving reliable target recognition remains challenging due to dynamic viewpoint variations and platform instability. The inherent limitations of infrared imaging, particularly low contrast ratios and thermal crossover effects, significantly compromise detection accuracy. Moreover, the computational constraints of edge computing platforms pose a fundamental challenge in balancing real-time processing requirements with detection performance. Here, we present MonoSeg, a novel instance segmentation framework optimized for UAV perspective infrared vehicle detection. Our approach introduces three key innovations: (1) the Ghost Feature Bottle Cross module (GFBC), which enhances backbone feature extraction efficiency while significantly reducing computational over-head; (2) the Scale Feature Recombination module (SFR), which optimizes feature selection in the Neck stage through adaptive multi-scale fusion; and (3) Comprehensive Loss function that enforces precise instance boundary delineation. Extensive experimental evaluation on bench-mark datasets demonstrates that MonoSeg achieves state-of-the-art performance across standard metrics, including Box mAP and Mask mAP, while maintaining substantially lower computational requirements compared to existing methods.
尽管基于无人机的红外车辆检测取得了快速进展,但由于动态视角变化和平台不稳定性,实现可靠的目标识别仍然具有挑战性。红外成像的固有局限性,特别是低对比度和热交叉效应,严重影响了检测精度。此外,边缘计算平台的计算限制在平衡实时处理需求与检测性能方面构成了根本性挑战。在此,我们提出了MonoSeg,这是一种针对无人机视角红外车辆检测优化的新型实例分割框架。我们的方法引入了三项关键创新:(1)幽灵特征瓶交叉模块(GFBC),它提高了主干特征提取效率,同时显著降低了计算开销;(2)尺度特征重组模块(SFR),它通过自适应多尺度融合优化颈部阶段的特征选择;(3)综合损失函数,用于精确划分实例边界。在基准数据集上进行的广泛实验评估表明,MonoSeg在包括框mAP和掩码mAP在内的标准指标上实现了领先的性能,同时与现有方法相比,其计算需求大幅降低。