Suppr超能文献

通过少样本驱动的风格到内容无监督域适应减少触觉传感中的跨传感器域差距。

Reducing Cross-Sensor Domain Gaps in Tactile Sensing via Few-Sample-Driven Style-to-Content Unsupervised Domain Adaptation.

作者信息

Jing Xingshuo, Qian Kun

机构信息

School of Automation, Southeast University, Nanjing 210096, China.

Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Nanjing 210096, China.

出版信息

Sensors (Basel). 2025 Jan 5;25(1):256. doi: 10.3390/s25010256.

Abstract

Transferring knowledge learned from standard GelSight sensors to other visuotactile sensors is appealing for reducing data collection and annotation. However, such cross-sensor transfer is challenging due to the differences between sensors in internal light sources, imaging effects, and elastomer properties. By understanding the data collected from each type of visuotactile sensors as domains, we propose a few-sample-driven style-to-content unsupervised domain adaptation method to reduce cross-sensor domain gaps. We first propose a Global and Local Aggregation Bottleneck (GLAB) layer to compress features extracted by an encoder, enabling the extraction of features containing key information and facilitating unlabeled few-sample-driven learning. We introduce a Fourier-style transformation (FST) module and a prototype-constrained learning loss to promote global conditional domain-adversarial adaptation, bridging style-level gaps. We also propose a high-confidence guided teacher-student network, utilizing a self-distillation mechanism to further reduce content-level gaps between the two domains. Experiments on three cross-sensor domain adaptation and real-world robotic cross-sensor shape recognition tasks demonstrate that our method outperforms state-of-the-art approaches, particularly achieving 89.8% accuracy on the DIGIT recognition dataset.

摘要

将从标准GelSight传感器学到的知识转移到其他视觉触觉传感器上,对于减少数据收集和标注工作很有吸引力。然而,由于传感器在内部光源、成像效果和弹性体特性方面存在差异,这种跨传感器转移具有挑战性。通过将从每种视觉触觉传感器收集的数据理解为不同的域,我们提出了一种少样本驱动的风格到内容的无监督域适应方法,以减少跨传感器的域差距。我们首先提出了一个全局和局部聚合瓶颈(GLAB)层,用于压缩编码器提取的特征,从而能够提取包含关键信息的特征,并促进无标签的少样本驱动学习。我们引入了一个傅里叶风格变换(FST)模块和一个原型约束学习损失,以促进全局条件域对抗适应,弥合风格层面的差距。我们还提出了一个高置信度引导的师生网络,利用自蒸馏机制进一步缩小两个域之间的内容层面差距。在三个跨传感器域适应和现实世界机器人跨传感器形状识别任务上的实验表明,我们的方法优于现有方法,特别是在DIGIT识别数据集上达到了89.8%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/615f/11723470/56bd45004765/sensors-25-00256-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验