Hazel Kyle, Singh Davindra, He Stephanie, Guertin Zakary, Husser Mathieu C, Helfield Brandon
Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada.
Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada; Department of Physics, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada.
Mol Ther. 2025 Mar 5;33(3):986-996. doi: 10.1016/j.ymthe.2025.01.013. Epub 2025 Jan 10.
CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity, and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses. This proof-of-concept study aimed to demonstrate that focused ultrasound (FUS) in combination with microbubbles can be used to deliver Cas9-sgRNA (single-guide RNA) RNPs and functionally edit human induced pluripotent stem cells (hiPSCs) in vitro, a model system that can be expanded to cardiovascular research via hiPSC-derived cardiomyocytes. Here, we first determine acoustic conditions suitable for the viable delivery of large proteins to hiPSCs with clinical Definity microbubble agents using our customized experimental platform. From here, we delivered Cas9-sgRNA RNP complexes targeting the EGFP (enhanced green fluorescent protein) gene to EGFP-expressing hiPSCs for EGFP knockout. Simultaneous acoustic cavitation detection during treatment confirmed a strong correlation between microbubble disruption and viable FUS-mediated protein delivery in hiPSCs. This study shows for the first time the potential for an FUS-mediated technique for targeted and precise CRISPR-Cas9 gene editing in human stem cells.
由于与其他CRISPR-Cas9递送形式相比,CRISPR-Cas9核糖核蛋白(RNPs)具有高靶向效率、快速活性以及缺乏插入诱变等优点,因此在基因治疗中受到了广泛关注。诸如肥厚型心肌病等遗传性疾病目前缺乏有效的治疗策略,是CRISPR-Cas9基因编辑技术的主要靶点。然而,目前Cas9的体内递送策略存在引发不必要免疫原性反应的风险。这项概念验证研究旨在证明聚焦超声(FUS)与微泡相结合可用于递送Cas9-单向导RNA(sgRNA)核糖核蛋白,并在体外对人诱导多能干细胞(hiPSC)进行功能编辑,这是一个可通过hiPSC衍生的心肌细胞扩展到心血管研究的模型系统。在此,我们首先使用定制的实验平台,确定适合使用临床用Definity微泡剂将大蛋白有效递送至hiPSC的声学条件。在此基础上,我们将靶向增强绿色荧光蛋白(EGFP)基因的Cas9-sgRNA核糖核蛋白复合物递送至表达EGFP的hiPSC,以实现EGFP基因敲除。治疗过程中同步进行的声空化检测证实,微泡破坏与hiPSC中FUS介导的蛋白有效递送之间存在强相关性。这项研究首次展示了FUS介导的技术在人类干细胞中进行靶向和精确CRISPR-Cas9基因编辑的潜力。