Suppr超能文献

EOSnet:用于图神经网络预测材料属性的嵌入式重叠结构

EOSnet: Embedded Overlap Structures for Graph Neural Networks in Predicting Material Properties.

作者信息

Tao Shuo, Zhu Li

机构信息

Department of Physics, Rutgers University, Newark, New Jersey 07102, United States of America.

出版信息

J Phys Chem Lett. 2025 Jan 23;16(3):717-724. doi: 10.1021/acs.jpclett.4c03179. Epub 2025 Jan 11.

Abstract

Graph Neural Networks (GNNs) have emerged as powerful tools for predicting material properties, yet they often struggle to capture many-body interactions and require extensive manual feature engineering. Here, we present EOSnet (Embedded Overlap Structures for Graph Neural Networks), a novel approach that addresses these limitations by incorporating Gaussian Overlap Matrix (GOM) fingerprints as node features within the GNN architecture. Unlike models that rely on explicit angular terms or human-engineered features, EOSnet efficiently encodes many-body interactions through orbital overlap matrices, providing a rotationally invariant and transferable representation of atomic environments. The model demonstrates superior performance across various prediction tasks of materials' properties, achieving particularly notable results in properties sensitive to many-body interactions. For band gap prediction, EOSnet achieves a mean absolute error of 0.163 eV, surpassing previous state-of-the-art models. The model also excels in predicting mechanical properties and classifying materials, with 97.7% accuracy in metal/nonmetal classification. These results demonstrate that embedding GOM fingerprints into node features enhances the ability of GNNs to capture complex atomic interactions, making EOSnet a powerful tool for materials' discovery and property prediction.

摘要

图神经网络(GNNs)已成为预测材料属性的强大工具,但它们在捕捉多体相互作用方面往往存在困难,并且需要大量的人工特征工程。在此,我们提出了EOSnet(用于图神经网络的嵌入式重叠结构),这是一种新颖的方法,通过在GNN架构中纳入高斯重叠矩阵(GOM)指纹作为节点特征来解决这些限制。与依赖显式角度项或人工设计特征的模型不同,EOSnet通过轨道重叠矩阵有效地编码多体相互作用,提供原子环境的旋转不变和可转移表示。该模型在材料属性的各种预测任务中表现出卓越的性能,在对多体相互作用敏感的属性方面取得了特别显著的成果。对于带隙预测,EOSnet实现了0.163 eV的平均绝对误差,超过了先前的最先进模型。该模型在预测机械性能和材料分类方面也表现出色,在金属/非金属分类中准确率达到97.7%。这些结果表明,将GOM指纹嵌入节点特征可增强GNN捕捉复杂原子相互作用的能力,使EOSnet成为材料发现和属性预测的强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d178/12333346/85a0253a87b9/jz4c03179_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验