He Siyu, Jin Yinuo, Nazaret Achille, Shi Lingting, Chen Xueer, Rampersaud Sham, Dhillon Bahawar S, Valdez Izabella, Friend Lauren E, Fan Joy Linyue, Park Cameron Y, Mintz Rachel L, Lao Yeh-Hsing, Carrera David, Fang Kaylee W, Mehdi Kaleem, Rohde Madeline, McFaline-Figueroa José L, Blei David, Leong Kam W, Rudensky Alexander Y, Plitas George, Azizi Elham
Department of Biomedical Engineering, Columbia University, New York, NY, USA.
Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA.
Nat Biotechnol. 2025 Feb;43(2):223-235. doi: 10.1038/s41587-024-02173-8. Epub 2024 Mar 21.
Spatially resolved gene expression profiling provides insight into tissue organization and cell-cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference. Starfysh improves the characterization of spatial dynamics in complex tissues using histology images and enables the comparison of niches as spatial hubs across tissues. Integrative analysis of primary estrogen receptor (ER)-positive breast cancer, triple-negative breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led to the identification of spatial hubs with patient- and disease-specific cell type compositions and revealed metabolic reprogramming shaping immunosuppressive hubs in aggressive MBC.
空间分辨基因表达谱分析有助于深入了解组织结构和细胞间相互作用;然而,基于测序的空间转录组学(ST)缺乏单细胞分辨率。当前的ST分析方法需要单细胞RNA测序数据作为参考,以便严谨地解释细胞状态,大多不使用相关的组织学图像,也无法推断多个组织之间的共享邻域。在此,我们展示了Starfysh,这是一个使用深度生成模型的计算工具箱,该模型结合了原型分析和任何已知的细胞类型标记,无需单细胞参考即可表征已知或新的组织特异性细胞状态。Starfysh利用组织学图像改进了对复杂组织中空间动态的表征,并能够将生态位作为跨组织的空间枢纽进行比较。对原发性雌激素受体(ER)阳性乳腺癌、三阴性乳腺癌(TNBC)和化生性乳腺癌(MBC)组织的综合分析,导致识别出具有患者和疾病特异性细胞类型组成的空间枢纽,并揭示了代谢重编程塑造侵袭性MBC中的免疫抑制枢纽。