Meza-Joya Fabio Leonardo, Morgan-Richards Mary, Trewick Steven A
Wildlife & Ecology Massey University Palmerston North New Zealand.
Ecol Evol. 2025 Jan 9;15(1):e70810. doi: 10.1002/ece3.70810. eCollection 2025 Jan.
Anthropogenic planetary heating is disrupting global alpine systems, but our ability to empirically measure and predict responses in alpine species distributions is impaired by a lack of comprehensive data and technical limitations. We conducted a comprehensive, semi-quantitative review of empirical studies on contemporary range shifts in alpine insects driven by climate heating, drawing attention to methodological issues and potential biotic and abiotic factors influencing variation in responses. We highlight case studies showing how range dynamics may affect standing genetic variation and adaptive potential, and discuss how data integration frameworks can improve forecasts. Although biotic and abiotic factors influence individual species responses, most alpine insects studied so far are shifting to higher elevations. Upslope shifts are often accompanied by range contractions that are expected to diminish species genetic variation and adaptive potential, increasing extinction risk. Endemic species on islands are predicted to be especially vulnerable. Inferences drawn from the responses of alpine insects, also have relevance to species in other montane habitats. Correlative niche modelling is a keystone tool to predict range responses to planetary heating, but its limited ability to consider biological processes underpinning species' responses complicates interpretation. Alpine insects exhibit some potential to respond to rising temperatures via genetic change or phenotypic plasticity. Thus, future efforts should incorporate biological processes by using flexible hybrid niche modelling approaches to enhance the biological realism of predictions. Boosting scientific capability to envisage the future of alpine environments and their associated biota is imperative given that the speed and intensity of heating on high-mountain ecosystems can surpass our ability to collect the empirical data required to guide effective conservation planning and management decisions.
人为的全球变暖正在扰乱全球高山系统,但由于缺乏全面的数据和技术限制,我们通过实证测量和预测高山物种分布变化的能力受到了损害。我们对有关气候变暖驱动的高山昆虫当代分布范围变化的实证研究进行了全面的半定量综述,提请注意方法学问题以及影响反应变化的潜在生物和非生物因素。我们重点介绍了一些案例研究,展示了分布范围动态如何影响现存的遗传变异和适应潜力,并讨论了数据整合框架如何改进预测。尽管生物和非生物因素会影响单个物种的反应,但迄今为止研究的大多数高山昆虫都在向更高海拔迁移。向上坡迁移通常伴随着分布范围的收缩,这预计会减少物种的遗传变异和适应潜力,增加灭绝风险。预计岛屿上的特有物种尤其脆弱。从高山昆虫的反应中得出的推论,也与其他山地栖息地的物种相关。相关生态位建模是预测对全球变暖的分布范围反应的关键工具,但其考虑支撑物种反应的生物过程的能力有限,这使得解释变得复杂。高山昆虫具有通过基因变化或表型可塑性对气温上升做出反应的潜力。因此,未来的工作应通过使用灵活的混合生态位建模方法纳入生物过程,以提高预测的生物现实性。鉴于高山生态系统变暖的速度和强度可能超过我们收集指导有效保护规划和管理决策所需实证数据的能力,提高设想高山环境及其相关生物区系未来的科学能力势在必行。