Suppr超能文献

Interaction between cold and altitude exposure on pulmonary circulation of cattle.

作者信息

Busch M A, Tucker A, Robertshaw D

出版信息

J Appl Physiol (1985). 1985 Mar;58(3):948-53. doi: 10.1152/jappl.1985.58.3.948.

Abstract

Hereford calves were exposed in a temperature-controlled hypobaric chamber to environmental temperatures of -2 to 1 degree C (cold) at altitudes of 1,524 m (resident altitude) and 3,048 m 1) to characterize the effects of cold exposure on the pulmonary circulation; 2) to examine the role of cold-induced hypoventilation on the pulmonary circulation; and 3) to examine the interaction between cold and hypoxia on the pulmonary circulation. Cold exposure produced a significant increase in pulmonary arterial pressure (Ppa), pulmonary arterial wedge pressure (Ppaw), and pulmonary vascular resistance (PVR) at both 1,524 and 3,048 m without affecting cardiac output. Concomitantly, cold exposure caused reductions in minute ventilation, respiratory rate, end-tidal O2 tension (PETO2), and arterial O2 tension (PaO2). Tidal volume, end-tidal CO2 tension, and arterial CO2 tension increased. Neither arterial pH nor O2 consumption changed during cold exposure. These results indicated that both pulmonary arterial and venous vasoconstriction were responsible for the pulmonary hypertension associated with cold exposure. Acute exposure to 3,048 m during cold exposure produced increases in Ppa and PVR that were similar to those elicited by cold exposure at 1,524. It was concluded that altitude exposure neither attenuated nor potentiated the effect of cold exposure on the pulmonary circulation; rather, altitude and cold exposure interacted additively. O2 administered during cold exposure to restore PETO2 and PaO2 to control values partially restored Ppa and PVR to control values. This suggested that a portion of the pulmonary hypertension associated with cold exposure was due to hypoxic pulmonary vasoconstriction elicited by the cold-induced alveolar hypoventilation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验