Seo Sangmin, Kim Hwanhee, Lee Jieun, Choi Seungyeon, Park Sanghyun
Department of Computer Science, Yonsei University, Yonsei-ro 50, Seodaemun-gu, 03722, Seoul, Republic of Korea.
UBLBio Corporation, Yeongtong-ro 237, Suwon, 16679, Gyeonggi-do, Republic of Korea.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae712.
Identifying new compounds that interact with a target is a crucial time-limiting step in the initial phases of drug discovery. Compound-protein complex structure-based affinity prediction models can expedite this process; however, their dependence on high-quality three-dimensional (3D) complex structures limits their practical application. Prediction models that do not require 3D complex structures for binding-affinity estimation offer a theoretically attractive alternative; however, accurately predicting affinity without interaction information presents significant challenges. We introduce BlendNet, a framework that employs a knowledge transfer strategy to improve affinity prediction accuracy by learning the interdependent relationships between compounds and proteins without relying on 3D complex structures. Compared with state-of-the-art models for affinity prediction, BlendNet demonstrated superior performance across various cold-start cases. The ability of BlendNet to interpret compound-protein interactions without utilizing complex structure data highlights its potential to accelerate and streamline drug development.
识别与靶点相互作用的新化合物是药物发现初始阶段的关键且耗时的步骤。基于化合物 - 蛋白质复合物结构的亲和力预测模型可以加快这一过程;然而,它们对高质量三维(3D)复合物结构的依赖限制了其实际应用。不需要3D复合物结构进行结合亲和力估计的预测模型提供了一种理论上有吸引力的替代方案;然而,在没有相互作用信息的情况下准确预测亲和力面临重大挑战。我们引入了BlendNet,这是一个采用知识转移策略的框架,通过学习化合物和蛋白质之间的相互依赖关系来提高亲和力预测准确性,而不依赖于3D复合物结构。与用于亲和力预测的最先进模型相比,BlendNet在各种冷启动情况下都表现出卓越的性能。BlendNet在不利用复杂结构数据的情况下解释化合物 - 蛋白质相互作用的能力突出了其加速和简化药物开发的潜力。