Suppr超能文献

用于范德华器件制造的任意金属电极的拾取与放置转移

Pick-and-Place Transfer of Arbitrary-Metal Electrodes for van der Waals Device Fabrication.

作者信息

Xing Kaijian, McEwen Daniel, Yin Yuefeng, Zhao Weiyao, Bake Abdulhakim, Cortie David, Liu Jingying, Vu Thi-Hai-Yen, Chen Yi-Hsun, Hone James, Stacey Alastair, Edmonds Mark T, Medhekar Nikhil V, Watanabe Kenji, Taniguchi Takashi, Ou Qingdong, Qi Dong-Chen, Fuhrer Michael S

机构信息

Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Zhuhai 519099, China.

School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.

出版信息

ACS Nano. 2025 Jan 28;19(3):3579-3588. doi: 10.1021/acsnano.4c13592. Epub 2025 Jan 13.

Abstract

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface. The technique enables transfer of arbitrary-metal electrodes and an electrode array, as demonstrated by successful transfer of eight different elemental metals with work functions ranging from 4.22 to 5.65 eV. We also demonstrate the electrode array transfer for large-scale device fabrication. The mechanical transfer of metal electrodes from diamond to van der Waals materials creates atomically smooth interfaces with no interstitial impurities or disorder, as observed with cross-section high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. As a demonstration of its device application, we use the diamond transfer technique to create metal contacts to monolayer transition metal dichalcogenide semiconductors with high-work-function Pd, low-work-function Ti, and semimetal Bi to create - and -type field-effect transistors with low Schottky barrier heights. We also extend this technology to air-sensitive materials (trilayer 1T' WTe) and other applications such as ambipolar transistors, Schottky diodes, and optoelectronics. This highly reliable and reproducible technology paves the way for new device architectures and high-performance devices.

摘要

范德华电极集成是一种在金属与二维材料之间创建近乎完美界面的很有前景的策略,具有消除费米能级钉扎和降低接触电阻等优点。然而,缺乏一种简单、可推广的拾取和放置转移技术极大地阻碍了该技术的广泛应用。我们展示了从可重复使用的抛光氢化金刚石衬底上拾取和放置预制电极的方法,由于氢化金刚石表面固有的低能量和无悬空键的性质,无需使用任何牺牲层。该技术能够转移任意金属电极和电极阵列,成功转移了功函数范围从4.22到5.65 eV的八种不同元素金属就证明了这一点。我们还展示了用于大规模器件制造的电极阵列转移。从金刚石到范德华材料的金属电极的机械转移产生了原子级光滑的界面,没有间隙杂质或无序,这通过横截面高分辨率透射电子显微镜和能量色散X射线光谱观察到。作为其器件应用的一个实例,我们使用金刚石转移技术,用高功函数的钯、低功函数的钛和半金属铋与单层过渡金属二硫属化物半导体形成金属接触,以制造具有低肖特基势垒高度的n型和p型场效应晶体管。我们还将这项技术扩展到对空气敏感的材料(三层1T' WTe₂)以及其他应用,如双极晶体管、肖特基二极管和光电子学。这种高度可靠且可重复的技术为新的器件架构和高性能器件铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验