Suppr超能文献

用于手术导航的基于非接触式线结构光配准的微观增强现实校准。

Microscopic augmented reality calibration with contactless line-structured light registration for surgical navigation.

作者信息

Li Yuhua, Jiang Shan, Yang Zhiyong, Yang Shuo, Zhou Zeyang

机构信息

Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.

出版信息

Med Biol Eng Comput. 2025 May;63(5):1463-1479. doi: 10.1007/s11517-025-03288-z. Epub 2025 Jan 14.

Abstract

The use of AR technology in image-guided neurosurgery enables visualization of lesions that are concealed deep within the brain. Accurate AR registration is required to precisely match virtual lesions with anatomical structures displayed under a microscope. The purpose of this work was to develop a real-time augmented surgical navigation system using contactless line-structured light registration, microscope calibration, and visible optical tracking. Contactless discrete sparse line-structured light point cloud is utilized to construct patient-image registration. Microscope calibration optimization with dimensional invariant calibrator is employed to enable real-time tracking of the microscope. The visible optical tracking integrates a 3D medical model with surgical microscope video in real time, generating an augmented microscope stream. The proposed patient-image registration algorithm yielded an average root mean square error (RMSE) of 0.78 ± 0.14 mm. The pixel match ratio error (PMRE) of the microscope calibration was found to be 0.646%. The RMSE and PMRE of the system experiments are 0.79 ± 0.10 mm and 3.30 ± 1.08%, respectively. Experimental evaluations confirmed the feasibility and efficiency of microscope AR surgical navigation (MASN) registration. By means of registration technology, MASN overlays virtual lesions onto the microscopic view of the real lesions in real time, which can help surgeons to localize lesions hidden deep in tissue.

摘要

在图像引导神经外科手术中使用增强现实(AR)技术能够可视化隐藏在大脑深处的病变。需要精确的AR配准,以便将虚拟病变与显微镜下显示的解剖结构精确匹配。这项工作的目的是开发一种使用非接触式线结构光配准、显微镜校准和可见光光学跟踪的实时增强手术导航系统。利用非接触式离散稀疏线结构光点云来构建患者-图像配准。采用具有尺寸不变校准器的显微镜校准优化方法,以实现对显微镜的实时跟踪。可见光光学跟踪将3D医学模型与手术显微镜视频实时集成,生成增强显微镜流。所提出的患者-图像配准算法产生的平均均方根误差(RMSE)为0.78±0.14毫米。显微镜校准的像素匹配比率误差(PMRE)为0.646%。系统实验的RMSE和PMRE分别为0.79±0.10毫米和3.30±1.08%。实验评估证实了显微镜AR手术导航(MASN)配准的可行性和有效性。通过配准技术,MASN可将虚拟病变实时叠加到真实病变的显微镜视图上,这有助于外科医生定位隐藏在组织深处的病变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验