Gimperlein Matthias, Dominsky Felix, Schmiedeberg Michael
Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Bavaria, Germany.
Max-Planck Institut für Physik, Garching, 85748, Bavaria, Germany.
Eur Phys J E Soft Matter. 2025 Jan 13;48(1):5. doi: 10.1140/epje/s10189-024-00469-w.
We employ graph neural networks (GNN) to analyse and classify physical gel networks obtained from Brownian dynamics simulations of particles with competing attractive and repulsive interactions. Conventionally such gels are characterized by their position in a state diagram spanned by the packing fraction and the strength of the attraction. Gel networks at different regions of such a state diagram are qualitatively different although structural differences are subtile while dynamical properties are more pronounced. However, using graph classification the GNN is capable of positioning complete or partial snapshots of such gel networks at the correct position in the state diagram based on purely structural input. Furthermore, we demonstrate that not only supervised learning but also unsupervised learning can be used successfully. Therefore, the small structural differences are sufficient to classify the gel networks. Even the trend of data from experiments with different salt concentrations is classified correctly if the GNN was only trained with simulation data. Finally, GNNs are used to compute backbones of gel networks. As the node features used in the GNN are computed in linear time , the use of GNN significantly accelerates the computation of reduced networks on a particle level.
我们采用图神经网络(GNN)来分析和分类通过具有竞争吸引和排斥相互作用的粒子的布朗动力学模拟获得的物理凝胶网络。传统上,此类凝胶通过其在由堆积分数和吸引力强度所构成的状态图中的位置来表征。尽管结构差异细微而动力学特性更为显著,但在这样一个状态图的不同区域的凝胶网络在性质上是不同的。然而,使用图分类,GNN能够基于纯粹的结构输入将此类凝胶网络的完整或部分快照定位在状态图中的正确位置。此外,我们证明不仅监督学习而且无监督学习都可以成功使用。因此,微小的结构差异足以对凝胶网络进行分类。如果GNN仅用模拟数据进行训练,那么即使来自不同盐浓度实验的数据趋势也能被正确分类。最后,GNN用于计算凝胶网络的骨架。由于GNN中使用的节点特征是在线性时间内计算的,GNN的使用显著加速了粒子水平上简化网络的计算。