Diaz de Cerio Xabier, Bach Lorentzen Aleksander, Brandbyge Mads, Garcia-Lekue Aran
Donostia International Physics Center (DIPC), E-20018 Donostia-San Sebastián, Spain.
Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
Nano Lett. 2025 Jan 29;25(4):1281-1286. doi: 10.1021/acs.nanolett.4c04262. Epub 2025 Jan 14.
Nanoporous graphene (NPG), laterally bonded carbon nanoribbons, is a promising platform for controlling coherent electron propagation in the nanoscale. However, for its successful device integration NPG should ideally be on a substrate that preserves or enhances its anisotropic transport properties. Here, using an atomistic tight-binding model combined with nonequilibrium Green's functions, we study NPG on graphene and show that their electronic coupling is modulated as a function of the interlayer twist angle. At small twist angles (θ ≲ 10°), strong hybridization leads to substantial interlayer transmission and Talbot-like interference in the current flow on both layers. Besides, injected currents exhibit chiral features due to the twist-induced mirror-symmetry-breaking. Upon increasing the twist angle, the coupling is weakened and the monolayer electronic properties are restored. Furthermore, we predict spectroscopic signatures that allow to probe the twist-dependent interlayer coupling via scanning tunneling microscopy.
纳米多孔石墨烯(NPG),即横向键合的碳纳米带,是控制纳米尺度下相干电子传播的一个很有前景的平台。然而,为了成功实现器件集成,理想情况下NPG应该置于能够保持或增强其各向异性传输特性的衬底上。在此,我们使用结合了非平衡格林函数的原子紧束缚模型,研究了置于石墨烯上的NPG,并表明它们的电子耦合会根据层间扭转角而调制。在小扭转角(θ≲10°)时,强杂化导致大量的层间传输以及两层电流中类似塔尔博特效应的干涉。此外,由于扭转引起的镜面对称性破缺,注入电流呈现出手征特征。随着扭转角增大,耦合减弱,单层电子特性得以恢复。此外,我们预测了能通过扫描隧道显微镜探测扭转相关层间耦合的光谱特征。