Suppr超能文献

通过街景图像的深度学习分析提升城市滨海道路的视觉环境:美学与独特性视角

Enhancing the visual environment of urban coastal roads through deep learning analysis of street-view images: A perspective of aesthetic and distinctiveness.

作者信息

Zhang Yu, Xiong Xing, Yang Shanrui, Zhang Qinghai, Chi Minghong, Wen Xiaoyu, Zhang Xinyu, Wang Junwei

机构信息

Department of Landscape Architecture, Nanjing Agricultural University, Nanjing, China.

Academy of Fine Arts, Jiangsu Second Normal University, Nanjing, China.

出版信息

PLoS One. 2025 Jan 14;20(1):e0317585. doi: 10.1371/journal.pone.0317585. eCollection 2025.

Abstract

Urban waterfront areas, which are essential natural resources and highly perceived public areas in cities, play a crucial role in enhancing urban environment. This study integrates deep learning with human perception data sourced from street view images to study the relationship between visual landscape features and human perception of urban waterfront areas, employing linear regression and random forest models to predict human perception along urban coastal roads. Based on aesthetic and distinctiveness perception, urban coastal roads in Xiamen were classified into four types with different emphasis and priorities for improvement. The results showed that: 1) the degree of coastal openness had the greatest influence on human perception while the coastal landscape with a high green visual index decreases the distinctiveness perception; 2) the random forest model can effectively predict human perception on urban coastal roads with an accuracy rate of 87% and 77%; 3) The proportion of low perception road sections with potential for improvement is 60.6%, among which the proportion of low aesthetic perception and low distinctiveness perception road sections is 10.5%. These findings offer crucial evidence regarding human perception of urban coastal roads, and can provide targeted recommendations for enhancing the visual environment of urban coastal road landscapes.

摘要

城市滨水区是城市重要的自然资源和备受关注的公共区域,在改善城市环境方面发挥着关键作用。本研究将深度学习与源自街景图像的人类感知数据相结合,以研究视觉景观特征与人类对城市滨水区感知之间的关系,采用线性回归和随机森林模型预测城市沿海道路沿线的人类感知。基于审美和独特性感知,将厦门的城市沿海道路分为四类,各有不同的重点和改进优先级。结果表明:1)海岸开放性程度对人类感知影响最大,而具有高绿色视觉指数的海岸景观会降低独特性感知;2)随机森林模型能够有效预测城市沿海道路上的人类感知,准确率分别为87%和77%;3)具有改善潜力的低感知路段比例为60.6%,其中低审美感知和低独特性感知路段的比例为10.5%。这些发现为人类对城市沿海道路的感知提供了关键证据,并可为改善城市沿海道路景观的视觉环境提供有针对性的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3837/11731764/81d802a77de6/pone.0317585.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验