Suppr超能文献

高血压的初级保健研究:一项使用机器学习的文献计量分析。

Primary care research on hypertension: A bibliometric analysis using machine-learning.

作者信息

Yasli Gökben, Damar Muhammet, Özbiçakci Şeyda, Alici Serkan, Pinto Andrew David

机构信息

Department of Public Health, İzmir Health Directorate, İzmir, Turkey.

Information Center, Dokuz Eylul University, İzmir, Turkey.

出版信息

Medicine (Baltimore). 2024 Nov 22;103(47):e40482. doi: 10.1097/MD.0000000000040482.

Abstract

Hypertension is one of the most important chronic diseases worldwide. Hypertension is a critical condition encountered frequently in daily life, forming a significant area of service in Primary Health Care (PHC), which healthcare professionals often confront. It serves as a precursor to many critical illnesses and can lead to fatalities if not addressed promptly. Our study underscores the importance of this critical issue by analyzing articles related to hypertension in the PHC research area from the Web of Science Core Collection using bibliometric methods and machine learning techniques, specifically topic analyses using the latent Dirichlet allocation method. The analysis was conducted using Python Scikit-learn, Gensim, and Wordcloud Libraries, the VosViewer program, and the Bibliometrix R Biblioshiny library. Our findings revealed a steady increase in publication output in hypertension-related research. Analysis shows that hypertension-related research in the PHC research area is clustered into 8 groups: (1) management of hypertension in PHC, risk factors, and complications; (2) psychiatric disorders and hypertension; (3) pediatric and pregnancy hypertension; (4) environmental factors and living conditions; (5) sex and age effects on hypertension; (6) COVID-19 and hypertension; (7) behavioral risk factors, quality of life, and awareness; and (8) current treatment methods and guidelines. Research on hypertension has focused intensively on kidney disease, obesity, pregnancy, cardiovascular risk, heart disease, calcium channel blockers, body mass index, amlodipine, mortality, risk factors, hyperlipidemia, depression, and resistant hypertension. This study represents the first and comprehensive bibliometric analysis of hypertension in the PHC research area. Annual publication volumes have steadily increased over the years. In recent years, topics such as social determinants, patient attendance, self-management, diabetes mellitus, COVID-19, telemedicine, type 2 diabetes, and noncommunicable diseases have garnered significant interest in the field of PHC services.

摘要

高血压是全球最重要的慢性病之一。高血压是日常生活中经常遇到的关键病症,在初级卫生保健(PHC)中构成了一个重要的服务领域,医护人员经常会遇到。它是许多严重疾病的先兆,如果不及时治疗可能导致死亡。我们的研究通过使用文献计量方法和机器学习技术,特别是使用潜在狄利克雷分配方法进行主题分析,分析了科学网核心合集中与初级卫生保健研究领域中高血压相关的文章,强调了这个关键问题的重要性。分析使用了Python的Scikit-learn、Gensim和Wordcloud库、VosViewer程序以及Bibliometrix R Biblioshiny库。我们的研究结果显示,高血压相关研究的出版物数量稳步增加。分析表明,初级卫生保健研究领域中与高血压相关的研究分为8组:(1)初级卫生保健中高血压的管理、危险因素和并发症;(2)精神障碍与高血压;(3)儿科和妊娠高血压;(4)环境因素和生活条件;(5)性别和年龄对高血压的影响;(6)新冠病毒病与高血压;(7)行为危险因素、生活质量和认知;(8)当前的治疗方法和指南。高血压研究主要集中在肾脏疾病、肥胖、妊娠、心血管风险、心脏病、钙通道阻滞剂、体重指数、氨氯地平、死亡率、危险因素、高脂血症、抑郁症和难治性高血压等方面。本研究是初级卫生保健研究领域中对高血压的首次全面文献计量分析。多年来年度出版物数量稳步增加。近年来,社会决定因素、患者就诊率、自我管理、糖尿病、新冠病毒病、远程医疗、2型糖尿病和非传染性疾病等主题在初级卫生保健服务领域引起了极大关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1855/11596423/811b4b25d60b/medi-103-e40482-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验