Suppr超能文献

基于改进的YOLOv8n的头盔佩戴检测方法。

Improved YOLOv8n based helmet wearing inspection method.

作者信息

Chen Xinying, Jiao Zhisheng, Liu Yuefan

机构信息

School of Computer and Communication Engineering, Dalian Jiaotong University, Dalian, 116028, China.

出版信息

Sci Rep. 2025 Jan 14;15(1):1945. doi: 10.1038/s41598-024-84555-1.

Abstract

This paper proposes the YOLOv8n_H method to address issues regarding parameter redundancy, slow inference speed, and suboptimal detection precision in contemporary helmet-wearing target recognition algorithms. The YOLOv8 C2f module is enhanced with a new SC_Bottleneck structure, incorporating the SCConv module, now termed SC_C2f, to mitigate model complexity and computational costs. Additionally, the original Detect structure is substituted with the PC-Head decoupling head, leading to a significant reduction in parameter count and an enhancement in model efficiency. Moreover, the original Detect structure is replaced by the PC-Head decoupling head, significantly reducing parameter count and enhancing model efficiency. Finally, regression accuracy and convergence speed are boosted by the dynamic non-monotonic focusing mechanism introduced through the WIoU boundary loss function. Experimental results on the expanded SHWD dataset demonstrate a 46.63% reduction in model volume, a 44.19% decrease in parameter count, a 54.88% reduction in computational load, and an improvement in mean Average Precision (mAP) to 93.8% compared to the original YOLOv8 algorithm. In comparison to other algorithms, the model proposed in this paper markedly reduces model size, parameter count, and computational load while ensuring superior detection accuracy.

摘要

本文提出了YOLOv8n_H方法,以解决当代头盔佩戴目标识别算法中存在的参数冗余、推理速度慢和检测精度欠佳等问题。YOLOv8的C2f模块通过一种新的SC_Bottleneck结构进行了增强,该结构并入了SCConv模块,现称为SC_C2f,以降低模型复杂度和计算成本。此外,原来的Detect结构被PC-Head解耦头所取代,从而显著减少了参数数量并提高了模型效率。而且,原来的Detect结构被PC-Head解耦头所替代,大幅减少了参数数量并提升了模型效率。最后,通过WIoU边界损失函数引入的动态非单调聚焦机制提高了回归精度和收敛速度。在扩展的SHWD数据集上的实验结果表明,与原始的YOLOv8算法相比,模型体积减少了46.63%,参数数量减少了44.19%,计算负载减少了54.88%,平均精度均值(mAP)提高到了93.8%。与其他算法相比,本文提出的模型在确保卓越检测精度的同时,显著减小了模型大小、参数数量和计算负载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/420b/11732994/09fd985e7576/41598_2024_84555_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验