Suppr超能文献

基于机器学习方法在斑秃诊断中识别有效的免疫生物标志物。

Identifying effective immune biomarkers in alopecia areata diagnosis based on machine learning methods.

作者信息

Zhou Qingde, Lan Lan, Wang Wei, Xu Xinchang

机构信息

Department of Pharmacy, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.

Zhejiang University School of Medicine, Hangzhou, China.

出版信息

BMC Med Inform Decis Mak. 2025 Jan 14;25(1):23. doi: 10.1186/s12911-025-02853-8.

Abstract

BACKGROUND

Alopecia areata (AA) is a common non-scarring hair loss disorder associated with autoimmune conditions. However, the pathobiology of AA is not well understood, and there is no targeted therapy available for AA.  METHODS: In this study, differential gene expression analysis, immune status assessment, weighted correlation network analysis (WGCNA), and functional enrichment analysis were performed to identify shared genes associated with both immunological response and AA. Machine learning methods were then used to identify three hub genes as potential diagnostic markers for AA. External validation was performed, and the correlation of hub genes with immune infiltration, immune checkpoint genes, and key marker genes and pathways were evaluated.

RESULTS

Three hub genes were identified, which accurately predicted the progression of AA and the immune status. The hub genes were found to be diagnostic markers for AA with high predictive accuracy. External validation confirmed the efficacy of these markers in identifying AA patients.

CONCLUSION

Overall, the study provides a novel approach for the diagnosis, prevention, and treatment of AA. The findings could potentially lead to the development of targeted therapies for AA based on the identified hub genes. The study also highlights the potential of machine learning and bioinformatics analysis in identifying new biomarkers for autoimmune diseases.

摘要

背景

斑秃(AA)是一种常见的非瘢痕性脱发疾病,与自身免疫性疾病相关。然而,AA的病理生物学尚未完全明确,且尚无针对AA的靶向治疗方法。

方法

在本研究中,进行了差异基因表达分析、免疫状态评估、加权基因共表达网络分析(WGCNA)和功能富集分析,以鉴定与免疫反应和AA相关的共享基因。然后使用机器学习方法鉴定出三个核心基因作为AA的潜在诊断标志物。进行了外部验证,并评估了核心基因与免疫浸润、免疫检查点基因以及关键标志物基因和通路的相关性。

结果

鉴定出三个核心基因,它们能够准确预测AA的进展和免疫状态。这些核心基因被发现是具有高预测准确性的AA诊断标志物。外部验证证实了这些标志物在识别AA患者方面的有效性。

结论

总体而言,该研究为AA的诊断、预防和治疗提供了一种新方法。这些发现可能会基于所鉴定的核心基因开发出针对AA的靶向治疗方法。该研究还突出了机器学习和生物信息学分析在识别自身免疫性疾病新生物标志物方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e056/11734347/31d46cea6471/12911_2025_2853_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验