Wang Mei, Zhu Xinyuan, Zhou Guangyue, Li Kewen, Wu Qingshan, Fan Wankai
College of computer science and technology, China University of Petroleum (East China), No.66 Changjiang West Road, Huangdao, Qingdao, 266580, Shandong, China.
Sci Rep. 2025 Jan 15;15(1):2020. doi: 10.1038/s41598-025-85436-x.
Addressing the issues of inadequate information exchange among subsequences in the operational time series of water injection pumps, leading to low accuracy and high false alarm rates in anomaly detection, this paper proposes a multidimensional time series anomaly detection method for water injection pump operations, leveraging Long Short-Term Memory Autoencoder augmented with Attention Mechanism (LSTMA-AE) and mechanistic constraints. The LSTMA-AE framework encompasses three primary modules: a Time Feature Extraction Module (Encoder), an Attention Layer, and a Data Reconstruction Module (Decoder). The Encoder captures temporal dependencies and features within the input sequences, mapping the input data into a higher-dimensional space. The Attention Layer, embedded within the hidden state computation, dynamically adjusts the contribution of each timestep's input information to the hidden state, thereby enhancing the extraction of vital information while ignoring irrelevant data. The Decoder is responsible for reconstructing the latent representations generated by the Encoder back into the original time series data. By utilizing LSTMA-AE, we aim to improve the accuracy of anomaly detection, while simultaneously employing mechanistic constraints to mitigate false alarm rates. Experimental results demonstrate that this approach significantly outperforms methods such as polynomial interpolation, random forest, and LSTM-AE in terms of anomaly detection accuracy on field datasets from oilfields, accompanied by a notably lower false alarm rate.
针对注水泵运行时间序列中后续序列间信息交换不足,导致异常检测准确率低、误报率高的问题,本文提出一种用于注水泵运行的多维时间序列异常检测方法,该方法利用了增强注意力机制的长短期记忆自动编码器(LSTMA-AE)和机理约束。LSTMA-AE框架包含三个主要模块:时间特征提取模块(编码器)、注意力层和数据重构模块(解码器)。编码器捕捉输入序列中的时间依赖性和特征,将输入数据映射到更高维空间。嵌入在隐藏状态计算中的注意力层动态调整每个时间步输入信息对隐藏状态的贡献,从而在忽略无关数据的同时增强重要信息的提取。解码器负责将编码器生成的潜在表示重构回原始时间序列数据。通过使用LSTMA-AE,我们旨在提高异常检测的准确率,同时采用机理约束来降低误报率。实验结果表明,在油田现场数据集的异常检测准确率方面,该方法显著优于多项式插值、随机森林和LSTM-AE等方法,且误报率明显更低。