Selim Samy, Abdelghany Tarek M, Almuhayawi Mohammed S, Nagshabandi Mohammed K, Tarabulsi Muyassar K, Elamir Mohammed Yagoub Mohammed, Alharbi Asmaa A, Al Jaouni Soad K
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Kingdom of Saudi Arabia.
Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11725, Egypt.
Sci Rep. 2025 Jan 15;15(1):2032. doi: 10.1038/s41598-024-85005-8.
This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.13 to 36.21 nm. Numerous functional groups were detected on the surface of Zn-MnO nanocomposite via Fourier-transform infrared spectroscopy. X-Ray diffraction assay appeared that the synthesized Zn-MnO nanocomposites contained two different components, MnO (JCPDS 81-2261) and ZnO (JCPDS 36-1451), while energy dispersive X-ray spectra confirmed the occurrence of manganese, zinc, oxygen, and carbon in Zn-MnO nanocomposites. Zn-MnO nanocomposites demonstrated excellent suppress effect versus the growth of various bacteria namely Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Salmonella typhi, and Klebsiella pneumoniae via agar well diffusion assays with inhibition areas of 36 ± 0.1, 25 ± 0.1, 27 ± 0.2, and 23 ± 0.2 mm, correspondingly. Alterations in the ultrastructure of the treated K. pneumoniae by Zn-MnO nanocomposite were recorded. Both the values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration of Zn-MnO nanocomposite extended from 15.62 to 125 µg/mL employing the examined bacteria. The antibiofilm activity of Zn-MnO nanocomposites was 82.07, 75.43, 43.65, and 41.35% at 25% MIC, and 96.54, 93.0, 94.53, and 91.11% at 75% MIC against S. aureus, MRSA, K. pneumoniae, and S. typhi, respectively. At 25 to 75% MIC, Zn-MnO nanocomposites exhibited antihemolytic activity with the maximum activity of 96.3% at 75% MIC in the presence of MRSA. Extensive molecular docking studies were performed to identify the optimal location for manganese oxide and zinc oxide nanoclusters binding to MRSA. MnO-NPs and ZnO-NPs demonstrated inhibitory activity against the crystal structure of putative minohydrolase (PDB ID: 4EWT), methicillin acyl-penicillin binding protein 2a structure (PDB ID: 1MWU) and K2U bound crystal structure of class II peptide deformylase from MRSA (PDB ID: 6JFQ). The minimum binding energy was utilized to estimate the receptor's binding site with NPs, providing additional understanding of the ways of action. Anti-inflammatory activity of Zn-MnO nanocomposites via cyclooxygenase-1 and cyclooxygenase-2 enzymes inhibition was documented with IC doses of 20.81 ± 0.68 µg/mL and 35.87 ± 1.35 µg/mL, respectively. Based on these outcomes, it was concluded that Zn-MnO nanocomposites could be useful agents for the management of multidrug resistant bacterial pathogens and inflammation.
本研究调查了通过红青霉真菌进行锌 - 二氧化锰纳米复合材料的绿色合成。在此,通过紫外分光光度法确认了合成的锌 - 二氧化锰纳米复合材料,其主峰为370纳米。透射电子显微镜证实了不规则颗粒,呈类球形,粒径范围为25.13至36.21纳米。通过傅里叶变换红外光谱法在锌 - 二氧化锰纳米复合材料表面检测到众多官能团。X射线衍射分析表明,合成的锌 - 二氧化锰纳米复合材料包含两种不同成分,即二氧化锰(JCPDS 81 - 2261)和氧化锌(JCPDS 36 - 1451),而能量色散X射线光谱证实了锌 - 二氧化锰纳米复合材料中存在锰、锌、氧和碳。通过琼脂孔扩散试验,锌 - 二氧化锰纳米复合材料对金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌(MRSA)、伤寒沙门氏菌和肺炎克雷伯菌等多种细菌的生长表现出优异的抑制效果,抑制圈面积分别为36±0.1、25±0.1、27±0.2和23±0.2毫米。记录了锌 - 二氧化锰纳米复合材料处理后肺炎克雷伯菌超微结构的变化。使用受试细菌时,锌 - 二氧化锰纳米复合材料的最低抑菌浓度(MIC)和最低杀菌浓度值均从15.62扩展至125微克/毫升。在25% MIC时,锌 - 二氧化锰纳米复合材料对金黄色葡萄球菌、MRSA、肺炎克雷伯菌和伤寒沙门氏菌的抗生物膜活性分别为82.07%、75.43%、43.65%和41.35%;在75% MIC时,分别为96.54%、93.0%、94.53%和91.11%。在25%至75% MIC时,锌 - 二氧化锰纳米复合材料表现出抗溶血活性,在存在MRSA的情况下,75% MIC时的最大活性为96.3%。进行了广泛的分子对接研究,以确定氧化锰和氧化锌纳米簇与MRSA结合的最佳位置。MnO - NPs和ZnO - NPs对推定的肌醇水解酶(PDB ID:4EWT)、甲氧西林酰基青霉素结合蛋白2a结构(PDB ID:1MWU)以及MRSA的II类肽脱甲酰酶的K2U结合晶体结构(PDB ID:6JFQ)的晶体结构表现出抑制活性。利用最低结合能来估计受体与纳米颗粒的结合位点,从而对作用方式有了更多了解。记录了锌 - 二氧化锰纳米复合材料通过抑制环氧化酶 - 1和环氧化酶 - 2酶的抗炎活性,IC剂量分别为20.81±0.68微克/毫升和35.87±1.35微克/毫升。基于这些结果,得出结论:锌 - 二氧化锰纳米复合材料可能是用于管理多重耐药细菌病原体和炎症的有用药物。