Montoya Eric Arturo, Pei Xinyao, Krivorotov Ilya N
Department of Physics and Astronomy, University of California, Irvine, CA, USA.
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA.
Nat Nanotechnol. 2025 Mar;20(3):353-359. doi: 10.1038/s41565-024-01819-7. Epub 2025 Jan 15.
Spin-orbit torques enable energy-efficient manipulation of magnetization by electric current and hold promise for applications ranging from non-volatile memory to neuromorphic computing. Here we report the discovery of a giant spin-orbit torque induced by anomalous Hall current in ferromagnetic conductors. This anomalous Hall torque is self-generated as it acts on the magnetization of the ferromagnet that engenders the torque. The magnitude of the anomalous Hall torque is sufficiently large to fully negate magnetic damping of the ferromagnet, which allows us to implement a microwave spin torque nano-oscillator driven by this torque. The peculiar angular symmetry of the anomalous Hall torque favours its use over the conventional spin Hall torque in coupled nano-oscillator arrays. The universal character of the anomalous Hall torque makes it an integral part of the description of coupled spin transport and magnetization dynamics in magnetic nanostructures.
自旋轨道转矩能够通过电流对磁化强度进行节能操控,在从非易失性存储器到神经形态计算等一系列应用中颇具前景。在此,我们报告在铁磁导体中发现由反常霍尔电流诱导产生的巨大自旋轨道转矩。这种反常霍尔转矩是自生的,因为它作用于产生该转矩的铁磁体的磁化强度上。反常霍尔转矩的大小足够大,足以完全抵消铁磁体的磁阻尼,这使我们能够实现由该转矩驱动的微波自旋转矩纳米振荡器。反常霍尔转矩独特的角对称性使其在耦合纳米振荡器阵列中比传统自旋霍尔转矩更具优势。反常霍尔转矩的普适特性使其成为磁性纳米结构中耦合自旋输运和磁化动力学描述中不可或缺的一部分。