Bainsla Lakhan, Sakuraba Yuya, Kumar Akash, Chaurasiya Avinash Kumar, Masuda Keisuke, Suwannaharn Nattamon, Awad Ahmad A, Behera Nilamani, Khymyn Roman, Sasaki Taisuke, Dash Saroj Prasad, Åkerman Johan
Department of Physics, Indian Institute of Technology─Ropar, Roopnagar, Punjab 140001, India.
Department of Physics, University of Gothenburg, Göteborg 41296, Sweden.
ACS Nano. 2025 May 20;19(19):18534-18544. doi: 10.1021/acsnano.5c02048. Epub 2025 May 9.
Spin Hall nano-oscillators (SHNOs) are emerging spintronic oscillators with significant potential for technological applications, including microwave signal generation, and unconventional computing. Despite their promising applications, SHNOs face various challenges, such as high energy consumption and difficulties in growing high-quality thin film heterostructures with clean interfaces. Here, single-layer topological magnetic Weyl semimetals open a possible solution as they possess both intrinsic ferromagnetism and a large spin-orbit coupling due to their topological properties. However, producing such high-quality thin films of magnetic Weyl semimetals that retain their topological properties and Berry curvature remains a challenge. We address these issues with high-quality single-layer epitaxial ferromagnetic CoMnGa Weyl semimetal thin film-based SHNOs. We observe a giant spin Hall conductivity, σ = (6.08 ± 0.02) × 10 (ℏ/2) Ω m, which is an order of magnitude higher than previous reports. Theoretical calculations corroborate the experimental results with a large intrinsic spin Hall conductivity due to presence of a strong Berry curvature. Further, self spin-orbit torque driven magnetization auto-oscillations are demonstrated for the first time, at an ultralow threshold current density of = 6.2 × 10 A m. These findings indicate that magnetic Weyl semimetals have tremendous application potential for developing energy-efficient spintronic devices.
自旋霍尔纳米振荡器(SHNOs)是新兴的自旋电子振荡器,在技术应用方面具有巨大潜力,包括微波信号产生和非常规计算。尽管它们有很有前景的应用,但SHNOs面临各种挑战,如高能耗以及难以生长具有清洁界面的高质量薄膜异质结构。在这里,单层拓扑磁性外尔半金属提供了一种可能的解决方案,因为它们由于其拓扑性质而具有本征铁磁性和大的自旋轨道耦合。然而,制备出能保持其拓扑性质和贝里曲率的高质量磁性外尔半金属薄膜仍然是一个挑战。我们用基于高质量单层外延铁磁CoMnGa外尔半金属薄膜的SHNOs来解决这些问题。我们观察到巨大的自旋霍尔电导率,σ = (6.08 ± 0.02) × 10 (ℏ/2) Ω m,比之前的报道高一个数量级。理论计算证实了实验结果,由于存在强贝里曲率,具有大的本征自旋霍尔电导率。此外,首次展示了自自旋轨道矩驱动的磁化自振荡,其超低阈值电流密度为 = 6.2 × 10 A m。这些发现表明,磁性外尔半金属在开发节能自旋电子器件方面具有巨大的应用潜力。