Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA.
Nat Mater. 2023 May;22(5):591-598. doi: 10.1038/s41563-023-01522-3. Epub 2023 Apr 3.
Large spin-orbit torques (SOTs) generated by topological materials and heavy metals interfaced with ferromagnets are promising for next-generation magnetic memory and logic devices. SOTs generated from y spin originating from spin Hall and Edelstein effects can realize field-free magnetization switching only when the magnetization and spin are collinear. Here we circumvent the above limitation by utilizing unconventional spins generated in a MnPd thin film grown on an oxidized silicon substrate. We observe conventional SOT due to y spin, and out-of-plane and in-plane anti-damping-like torques originated from z spin and x spin, respectively, in MnPd/CoFeB heterostructures. Notably, we have demonstrated complete field-free switching of perpendicular cobalt via out-of-plane anti-damping-like SOT. Density functional theory calculations show that the observed unconventional torques are due to the low symmetry of the (114)-oriented MnPd films. Altogether our results provide a path toward realization of a practical spin channel in ultrafast magnetic memory and logic devices.
由拓扑材料和重金属与铁磁体界面产生的大自旋轨道扭矩(SOT)有望用于下一代磁存储和逻辑器件。只有当磁化强度和自旋平行时,源自自旋霍尔和埃德斯坦效应的 y 自旋产生的 SOT 才能实现无场磁化翻转。在这里,我们通过利用在氧化硅衬底上生长的 MnPd 薄膜中产生的非常规自旋来规避上述限制。我们在 MnPd/CoFeB 异质结构中观察到了常规的 SOT 归因于 y 自旋,以及分别来自 z 自旋和 x 自旋的面外和面内类阻尼转矩。值得注意的是,我们已经通过面外类阻尼 SOT 证明了垂直钴的完全无场切换。密度泛函理论计算表明,观察到的非常规转矩归因于(114)取向的 MnPd 薄膜的低对称性。总之,我们的结果为在超快磁存储和逻辑器件中实现实际的自旋通道提供了一条途径。