Suppr超能文献

基于智能手机的检眼镜获取的视网膜视频的青光眼筛查自动分析。

Automated analysis for glaucoma screening of retinal videos acquired with smartphone-based ophthalmoscope.

作者信息

Scarpa Fabio, Berto Alexa, Tsiknakis Nikos, Manikis Georgios, Fotiadis Dimitrios I, Marias Kostas, Scarpa Alberto

机构信息

Department of Information Engineering, University of Padova, Padova, 35131, Italy.

D-Eye Srl, Padova, 35131, Italy.

出版信息

Heliyon. 2024 Jul 9;10(14):e34308. doi: 10.1016/j.heliyon.2024.e34308. eCollection 2024 Jul 30.

Abstract

Widespread screening is crucial for the early diagnosis and treatment of glaucoma, the leading cause of visual impairment and blindness. The development of portable technologies, such as smartphone-based ophthalmoscopes, able to image the optical nerve head, represents a resource for large-scale glaucoma screening. Indeed, they consist of an optical device attached to a common smartphone, making the overall device cheap and easy to use. Automated analyses able to assist clinicians are crucial for fast, reproducible, and accurate screening, and can promote its diffusion making it possible even for non-expert ophthalmologists. Images acquired with smartphone ophthalmoscopes differ from that acquired with a fundus camera for the field of view, noise, colour, and the presence of pupil, iris and eyelid. Consequently, algorithms specifically designed for this type of image need to be developed. We propose a completely automated analysis of retinal video acquired with smartphone ophthalmoscopy. The proposed algorithm, based on convolutional neural networks, selects the most relevant frames in the video, segments both optic disc and cup, and computes the cup-to-disc ratio. The developed networks were partially trained on images from a publicly available fundus camera datasets, modified through an original procedure to be statistically equal to the ones acquired with a smartphone ophthalmoscope. The proposed algorithm achieves good results in images acquired from healthy and pathological subjects. Indeed, an accuracy ≥95 % was obtained for both disc and cup segmentation and the computed cup-to-disc ratios denote good agreement with manual analysis (mean difference 9 %), allowing a substantial differentiation between healthy and pathological subjects.

摘要

广泛筛查对于青光眼的早期诊断和治疗至关重要,青光眼是导致视力损害和失明的主要原因。便携式技术的发展,如基于智能手机的检眼镜,能够对视神经乳头进行成像,为大规模青光眼筛查提供了一种资源。事实上,它们由一个连接到普通智能手机的光学设备组成,使得整个设备价格低廉且易于使用。能够协助临床医生的自动化分析对于快速、可重复和准确的筛查至关重要,并且可以促进其推广,甚至让非专业眼科医生也能进行筛查。用智能手机检眼镜获取的图像在视野、噪声(噪音)、颜色以及瞳孔、虹膜和眼睑的存在情况方面与用眼底相机获取的图像不同。因此,需要开发专门针对这类图像设计的算法。我们提出了一种对用智能手机检眼镜获取的视网膜视频进行完全自动化分析的方法。所提出的基于卷积神经网络的算法,在视频中选择最相关的帧,分割视盘和视杯,并计算杯盘比。所开发的网络部分是在来自公开可用的眼底相机数据集的图像上进行训练的,通过一种原始程序对这些图像进行修改,使其在统计上与用智能手机检眼镜获取的图像相等。所提出的算法在从健康和患病受试者获取的图像中取得了良好的结果。事实上,视盘和视杯分割的准确率均≥95%,并且计算出的杯盘比与手动分析结果显示出良好的一致性(平均差异为9%),能够在健康和患病受试者之间进行显著区分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b550/11734129/c8a7f3029513/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验