Huang Hengbo, Fang Lei, Wansapura Janaka, Prior Julie L, Manion Brad, Xu Baogang, Hongsermeier Cody, Gamadia Nisha, Blasi Nicole, Tang Rui, Egbulefu Christopher, Shokeen Monica, Quirk James D, Achilefu Samuel
Departments of Radiology, Washington University in St. Louis, MO 63110, USA.
Departments of Biomedical Engineering, Washington University in St. Louis, MO 63110, USA.
Theranostics. 2025 Jan 1;15(4):1205-1220. doi: 10.7150/thno.99863. eCollection 2025.
Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs). Polyvalent tannic acid was used to coordinate titanium (Ti), a reactive oxygen species (ROS)-generating catalyst, gadolinium (Gd), a magnetic resonance imaging (MRI) contrast agent, and cypate, a near-infrared fluorescent dye. The NPs exhibited higher magnetic field-dependent relaxivities ( = 20.8 mM⁻¹s⁻¹, = 72.1 mM⁻¹s⁻¹) than Gd-DTPA ( = 4.8 mM⁻¹s⁻¹, = 4.9 mM⁻¹s⁻¹) on a 3 T MRI scanner. Tannic acid coordination reduced the Ti band gap from 3.3 eV in TiO₂ NPs to 2.0 eV, tripling ROS generation under UV light exposure. In breast cancer models (4T1 and PyMT-Bo1), Cerenkov radiating radiopharmaceuticals activated Gd-Ti-FA-TA NPs and , generating cytotoxic ROS to inhibit tumor cell viability and prevent tumor progression. , the NPs selectively accumulated in 4T1 tumors and enhanced both T and T MRI contrast, highlighting a strategy to locally activate cytotoxic ROS generation with radiopharmaceuticals for cancer treatment, utilizing cross-modality PET/MRI and optical imaging for shallow and deep tissue visualization. The integrated nanoplatform allows direct imaging of drug delivery, providing guidance for the optimal timeline to activate therapeutic effects of pro-theranostic NPs via external triggers such as radionuclide-stimulated dynamic treatment.
癌症仍然是主要的死亡原因,侵袭性、耐药性肿瘤带来了巨大挑战。由于不同的药代动力学以及将药物递送与治疗反应相关联的困难,目前的联合疗法和成像方法常常失败。在本研究中,我们开发了放射性核素可激活的诊疗纳米颗粒(NPs),其包含叶酸受体靶向的双金属有机纳米颗粒(Gd-Ti-FA-TA NPs)。多价单宁酸用于配位钛(Ti),一种活性氧(ROS)生成催化剂,钆(Gd),一种磁共振成像(MRI)造影剂,以及西派特,一种近红外荧光染料。在3T MRI扫描仪上,这些纳米颗粒表现出比Gd-DTPA(r1 = 4.8 mM⁻¹s⁻¹,r2 = 4.9 mM⁻¹s⁻¹)更高的磁场依赖性弛豫率(r1 = 20.8 mM⁻¹s⁻¹,r2 = 72.1 mM⁻¹s⁻¹)。单宁酸配位将Ti的带隙从TiO₂ NPs中的3.3 eV降低至2.0 eV,在紫外线照射下使ROS生成增加两倍。在乳腺癌模型(4T1和PyMT-Bo1)中,切伦科夫辐射放射性药物激活了Gd-Ti-FA-TA NPs并产生细胞毒性ROS,以抑制肿瘤细胞活力并防止肿瘤进展。此外,这些纳米颗粒选择性地在4T1肿瘤中积累,并增强了T1和T2 MRI对比度,突出了一种利用放射性药物局部激活细胞毒性ROS生成以进行癌症治疗的策略,利用多模态PET/MRI和光学成像进行浅表和深部组织可视化。这种集成的纳米平台允许直接对药物递送进行成像,为通过外部触发因素(如放射性核素刺激的动态治疗)激活前诊疗纳米颗粒的治疗效果的最佳时间线提供指导。