Tikochinski Refael, Goldstein Ariel, Meiri Yoav, Hasson Uri, Reichart Roi
The Faculty of Data and Decisions Sciences, Technion - Israel Institute of Technology, Haifa, Israel.
Department of Cognitive and Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
Nat Commun. 2025 Jan 18;16(1):803. doi: 10.1038/s41467-025-56162-9.
Large Language Models (LLMs) have shown success in predicting neural signals associated with narrative processing, but their approach to integrating context over large timescales differs fundamentally from that of the human brain. In this study, we show how the brain, unlike LLMs that process large text windows in parallel, integrates short-term and long-term contextual information through an incremental mechanism. Using fMRI data from 219 participants listening to spoken narratives, we first demonstrate that LLMs predict brain activity effectively only when using short contextual windows of up to a few dozen words. Next, we introduce an alternative LLM-based incremental-context model that combines incoming short-term context with an aggregated, dynamically updated summary of prior context. This model significantly enhances the prediction of neural activity in higher-order regions involved in long-timescale processing. Our findings reveal how the brain's hierarchical temporal processing mechanisms enable the flexible integration of information over time, providing valuable insights for both cognitive neuroscience and AI development.
大语言模型(LLMs)已成功预测与叙事处理相关的神经信号,但其在长时间尺度上整合上下文的方式与人类大脑有着根本差异。在本研究中,我们展示了大脑如何通过一种增量机制整合短期和长期上下文信息,这与并行处理大文本窗口的大语言模型不同。利用219名听口头叙事的参与者的功能磁共振成像(fMRI)数据,我们首先证明,大语言模型只有在使用最多几十个单词的短上下文窗口时才能有效预测大脑活动。接下来,我们引入了一种基于大语言模型的替代增量上下文模型,该模型将传入的短期上下文与先前上下文的聚合动态更新摘要相结合。该模型显著增强了对参与长时间尺度处理的高阶区域神经活动的预测。我们的研究结果揭示了大脑的分层时间处理机制如何随着时间灵活整合信息,为认知神经科学和人工智能发展提供了有价值的见解。