Suppr超能文献

在观看电影期间,从额叶前皮质功能近红外光谱信号预测全脑神经动力学。

Predicting whole-brain neural dynamics from prefrontal cortex functional near-infrared spectroscopy signal during movie-watching.

作者信息

Gao Shan, Nash Ryleigh, Burns Shannon, Leong Yuan Chang

机构信息

Department of Psychology, University of Chicago, Chicago, IL 60637, United States.

Department of Psychological Science, Pomona College, Claremont, CA 91711, United States.

出版信息

Soc Cogn Affect Neurosci. 2025 May 20;20(1). doi: 10.1093/scan/nsaf043.

Abstract

Functional near-infrared spectroscopy (fNIRS) offers a portable, cost-effective alternative to functional magnetic resonance imaging (fMRI) for noninvasively measuring neural activity. However, fNIRS measurements are limited to cortical regions near the scalp, missing important medial and deeper brain areas. We introduce a predictive model that maps prefrontal fNIRS signals to whole-brain fMRI activity during movie-watching. By aligning neural responses to a common audiovisual stimulus, our approach leverages shared dynamics across imaging modalities to map fNIRS signals to broader neural activity patterns. We scanned participants with fNIRS and utilized a publicly available fMRI dataset of participants watching the same TV episode. The model was trained on the first half of the episode and tested on a held-out participant watching the second half to assess cross-individual and cross-stimulus generalizability. The model significantly predicted fMRI time courses in 66 out of 122 brain regions, including areas otherwise inaccessible to fNIRS. It also replicated intersubject functional connectivity patterns and retained semantic information about the movie content. The model generalized to an independent dataset from a different TV series, suggesting it captures robust cross-modal mappings across stimuli. Our publicly available models enable researchers to infer broader neural dynamics from localized fNIRS data during naturalistic tasks.

摘要

功能近红外光谱技术(fNIRS)为非侵入性测量神经活动提供了一种便携式、经济高效的功能磁共振成像(fMRI)替代方法。然而,fNIRS测量仅限于头皮附近的皮质区域,遗漏了重要的内侧和深部脑区。我们引入了一种预测模型,该模型在观看电影期间将前额叶fNIRS信号映射到全脑fMRI活动。通过将神经反应与共同的视听刺激对齐,我们的方法利用跨成像模态的共享动态将fNIRS信号映射到更广泛的神经活动模式。我们用fNIRS对参与者进行扫描,并利用一个公开可用的fMRI数据集,该数据集的参与者观看同一集电视剧。该模型在剧集的前半部分进行训练,并在观看后半部分的预留参与者上进行测试,以评估跨个体和跨刺激的可推广性。该模型在122个脑区中的66个脑区显著预测了fMRI时间进程,包括fNIRS无法触及的区域。它还复制了受试者间的功能连接模式,并保留了有关电影内容的语义信息。该模型推广到来自不同电视剧的独立数据集,表明它捕获了跨刺激的强大跨模态映射。我们公开可用的模型使研究人员能够在自然任务期间从局部fNIRS数据推断更广泛的神经动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9885/12094161/7bf130942614/nsaf043f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验