Suppr超能文献

普通人群的电子健康素养:一项中国的横断面研究。

eHealth literacy in the general population: a cross-sectional study in China.

作者信息

Sun Chao, Meijer Eline, Chavannes Niels H, Dai Huohuo, Li Xiao, Wang Yue, Wu Liangqiuhe, Zhang Qing, Kasteleyn Marise J

机构信息

Department of Public Health and Primary Care, Leiden University Medical Centre, Hippocratespad 21, Leiden, Netherlands.

National eHealth Living Lab, Leiden, Netherlands.

出版信息

BMC Public Health. 2025 Jan 17;25(1):211. doi: 10.1186/s12889-025-21389-0.

Abstract

BACKGROUND

eHealth literacy (eHL) is positively associated with health-related behaviors and outcomes. Previous eHL studies primarily collected data from online users and seldom focused on the general population in low- and middle-income countries (LMIC). Additionally, knowledge about factors that affect eHL is limited. Chronic lung disease (CLD) has brought a large burden in LMIC, making it a relevant example for studying eHL. This study aims to explore eHL and its associated factors within the general population of China, encompassing sociodemographic characteristics, CLD knowledge, digital access, eHealth use and attitudes towards eHealth.

METHOD

Data were collected from November 2023 to January 2024 via online and hard-copy questionnaires among the general population in China. Descriptive analyses were performed to explore eHL, CLD knowledge, digital access, and attitudes towards eHealth at different sociodemographic levels. Univariable and multivariable regression analyses were performed to identify factors associated with eHL.

RESULTS

439 valid questionnaires were collected. Participants demonstrated a mean eHL of 24.7 ± 8.2 and CLD knowledge of 5.9 ± 3.7, obtained a score of 6.9 ± 1.8 in attitudes towards eHealth. A notable percentage of participants (45/439, 10.3%) reported no digital access, especially those aged 66+, the unemployed, retired, those with a primary school or below degree and earning ≤ 1500 RMB monthly. Multivariable hierarchical regression analysis showed higher eHL was uniquely associated with younger age (b=-0.10, P < .001), higher educational level (b = 2.02, P < .001), higher income (b = 1.10, P < .001), having digital access (b = 6.35, P < .001), more frequent eHealth use (b = 1.14, P < .001), and more positive attitudes towards eHealth (b = 0.47, P = .003).

CONCLUSION

Our sample from the general population in China had a relatively low eHL and CLD knowledge level, but held a positive attitudes towards eHealth. A digital divide was noticed between the elderly, low socioeconomic population and other groups. Younger age, higher educational and income level, having digital access, more frequent eHealth use and more positive attitudes towards eHealth were significantly associated with higher eHL. Efforts at both individual and systematic levels should be made to improve eHL, and promote CLD knowledge and digital access, especially in disadvantaged populations. Moreover, there is a pressing need to develop and refine national and international standards for eHL.

摘要

背景

电子健康素养(eHL)与健康相关行为及结果呈正相关。以往关于电子健康素养的研究主要从网络用户中收集数据,很少关注低收入和中等收入国家(LMIC)的普通人群。此外,关于影响电子健康素养因素的了解有限。慢性肺病(CLD)在低收入和中等收入国家造成了沉重负担,使其成为研究电子健康素养的一个相关范例。本研究旨在探讨中国普通人群中的电子健康素养及其相关因素,包括社会人口学特征、慢性肺病知识、数字接入、电子健康使用情况以及对电子健康的态度。

方法

于2023年11月至2024年1月通过在线问卷和纸质问卷在中国普通人群中收集数据。进行描述性分析以探讨不同社会人口学水平下的电子健康素养、慢性肺病知识、数字接入情况以及对电子健康的态度。进行单变量和多变量回归分析以确定与电子健康素养相关的因素。

结果

共收集到439份有效问卷。参与者的电子健康素养平均分为24.7±8.2,慢性肺病知识平均分为5.9±3.7,对电子健康的态度得分为6.9±1.8。相当比例的参与者(45/439,10.3%)表示没有数字接入,尤其是66岁及以上人群、失业者、退休人员、小学及以下学历者以及月收入≤1500元的人群。多变量分层回归分析显示,较高的电子健康素养与较年轻的年龄(b=-0.10,P<.001)、较高的教育水平(b=2.02,P<.001)、较高的收入(b=1.10,P<.001)、有数字接入(b=6.35,P<.001)、更频繁使用电子健康(b=1.14,P<.001)以及对电子健康更积极的态度(b=0.47,P=.003)具有独特相关性。

结论

我们在中国普通人群中的样本电子健康素养和慢性肺病知识水平相对较低,但对电子健康持积极态度。老年人群、社会经济地位较低人群与其他群体之间存在数字鸿沟。较年轻的年龄、较高的教育和收入水平、有数字接入、更频繁使用电子健康以及对电子健康更积极的态度与较高的电子健康素养显著相关。应在个人和系统层面做出努力,以提高电子健康素养,促进慢性肺病知识的普及和数字接入,特别是在弱势群体中。此外,迫切需要制定和完善电子健康素养的国家和国际标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f90f/11742792/69b1677bf6e9/12889_2025_21389_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验